
PETSc
Portable, Extensible Toolkit for Scientific Computation

Karl Rupp
rupp@mcs.anl.gov

Mathematics and Computer Science Division
Argonne National Laboratory

Tutorial at Segundo Encuentro Nacional de Computación
de Alto Rendimiento para Aplicaciones Cientı́ficas

May 7th, 2013

2

Before we start...Before we start...

Goal of this Workshop

You are here to learn new things about HPC

Ask Questions

Tell me if you do not understand

Ask for further details

Don’t be shy

3

Table of ContentsTable of Contents

p-Bratu Equation

Distributed Arrays

Nonlinear Solvers

Matrices, Linear Solvers

Preconditioners

4

PETScPETSc

p-Bratu Equation

5

The p-Bratu EquationThe p-Bratu Equation

The “Hello World of PDEs”

Poisson’s Equation
−∇ ·

(
∇u
)

= f ,

Leads to symmetric, positive definite system matrices

Commonly used in numerical analysis (corner effects, etc.)

More General Form

With diffusivity tensor η:

−∇ ·
(
η∇u

)
= f ,

Typically: η > δ > 0

η can be discontinous (material boundaries)

Reduced regularity of solution

6

The p-Bratu EquationThe p-Bratu Equation

Additional Volume Term

Consider
−∇ ·

(
η∇u

)
− λeu − f = 0 ,

Canonical nonlinear form

eu has “wrong sign”: turning point at λcrit

Another Tweak

Diffusivity tensor η depends on u, e.g.:

η =
1
2
|∇u|2,

Singular or degenerate when ∇u = 0.

7

The p-Bratu EquationThe p-Bratu Equation

p-Bratu Equation

2-dimensional model problem

−∇ ·
(
|∇u|p−2∇u

)
− λeu − f = 0, 1 ≤ p ≤ ∞, λ < λcrit(p)

Singular or degenerate when ∇u = 0, turning point at λcrit.

Regularized Variant

Remove singularity of η using a parameter ε:

−∇ · (η∇u)− λeu − f = 0

η(γ) = (ε2 + γ)
p−2

2 γ(u) =
1
2
|∇u|2

Physical interpretation: diffusivity tensor flattened in direction ∇u

8

PETScPETSc

Distributed Arrays

9

Distributed ArrayDistributed Array

Interface for topologically structured grids

Defines (topological part of) a finite-dimensional function space

Get an element from this space: DMCreateGlobalVector()

Provides parallel layout

Refinement and coarsening

DMRefineHierarchy()

Ghost value coherence

DMGlobalToLocalBegin()

Matrix preallocation

DMCreateMatrix() (formerly DMGetMatrix())

10

Ghost ValuesGhost Values

To evaluate a local function f (x), each process requires

its local portion of the vector x

its ghost values, bordering portions of x owned by neighboring
processes

Local Node

Ghost Node

11

DMDA Global NumberingsDMDA Global Numberings

Proc 2 Proc 3
25 26 27 28 29
20 21 22 23 24
15 16 17 18 19
10 11 12 13 14
5 6 7 8 9
0 1 2 3 4

Proc 0 Proc 1
Natural numbering

Proc 2 Proc 3
21 22 23 28 29
18 19 20 26 27
15 16 17 24 25
6 7 8 13 14
3 4 5 11 12
0 1 2 9 10

Proc 0 Proc 1
PETSc numbering

12

DMDA Global vs. Local NumberingDMDA Global vs. Local Numbering

Global: Each vertex has a unique id, belongs on a unique process
Local: Numbering includes vertices from neighboring processes

These are called ghost vertices

Proc 2 Proc 3
X X X X X
X X X X X
12 13 14 15 X
8 9 10 11 X
4 5 6 7 X
0 1 2 3 X

Proc 0 Proc 1
Local numbering

Proc 2 Proc 3
21 22 23 28 29
18 19 20 26 27
15 16 17 24 25
6 7 8 13 14
3 4 5 11 12
0 1 2 9 10

Proc 0 Proc 1
Global numbering

13

DM VectorsDM Vectors

The DM object contains only layout (topology) information

All field data is contained in PETSc Vecs

Global vectors are parallel

Each process stores a unique local portion

DMCreateGlobalVector(DM dm, Vec *gvec)

Local vectors are sequential (and usually temporary)

Each process stores its local portion plus ghost values

DMCreateLocalVector(DM dm, Vec *lvec)

includes ghost values!

Coordinate vectors store the mesh geometry

DMDAGetCoordinates(DM dm, Vec *coords)

Can be manipulated with their own DMDA
DMDAGetCoordinateDA(DM dm,DM *cda)

14

Updating GhostsUpdating Ghosts

Two-step Process for Updating Ghosts

enables overlapping computation and communication

DMGlobalToLocalBegin(dm, gvec, mode, lvec)

gvec provides the data

mode is either INSERT_VALUES or ADD_VALUES

lvec holds the local and ghost values

DMGlobalToLocalEnd(dm, gvec, mode, lvec)

Finishes the communication

Reverse Process

Via DMLocalToGlobalBegin() and DMLocalToGlobalEnd().

15

DMDA StencilsDMDA Stencils

Available Stencils

proc 0 proc 1

proc 10

proc 0 proc 1

proc 10

Box Stencil Star Stencil

16

Creating a DMDACreating a DMDA

DMDACreate2d(comm, xbdy, ybdy, type, M, N, m, n,
dof, s, lm[], ln[], DA *da)

xbdy,ybdy: Specifies periodicity or ghost cells
DMDA_BOUNDARY_NONE, DMDA_BOUNDARY_GHOSTED,
DMDA_BOUNDARY_MIRROR, DMDA_BOUNDARY_PERIODIC

type

Specifies stencil: DMDA_STENCIL_BOX or DMDA_STENCIL_STAR

M,N

Number of grid points in x/y-direction

m,n

Number of processes in x/y-direction

dof
Degrees of freedom per node

s
The stencil width

lm,ln

Alternative array of local sizes

Use NULL for the default

17

Working with the Local FormWorking with the Local Form

Wouldn’t it be nice if we could just write our code for the natural
numbering?

Proc 2 Proc 3
25 26 27 28 29
20 21 22 23 24
15 16 17 18 19
10 11 12 13 14
5 6 7 8 9
0 1 2 3 4

Proc 0 Proc 1
Natural numbering

Proc 2 Proc 3
21 22 23 28 29
18 19 20 26 27
15 16 17 24 25
6 7 8 13 14
3 4 5 11 12
0 1 2 9 10

Proc 0 Proc 1
PETSc numbering

17

Working with the Local FormWorking with the Local Form

Wouldn’t it be nice if we could just write our code for the natural
numbering?

Yes, that’s what DMDAVecGetArray() is for.

DMDA offers local callback functions

FormFunctionLocal(), set by DMDASetLocalFunction()

FormJacobianLocal(), set by DMDASetLocalJacobian()

Evaluating the nonlinear residual F(x)

Each process evaluates the local residual
PETSc assembles the global residual automatically

Uses DMLocalToGlobal() method

18

Thinking of ExtensionsThinking of Extensions

Multiple Unknowns per Grid Node

Example 1: Displacements ux, uy

Example 2: Velocity components, Pressure

Typical in a multiphysics setting

Multiple Unknowns in a Distributed Setting

Robust abstract concepts important

Lots of bookkeeping

All done by PETSc

19

Thinking of ExtensionsThinking of Extensions

rank 0

rank 2

rank 1

rank 0

rank 1

rank 2

LocalToGlobalMapping

Monolithic Global Monolithic Local

Split Local

GetLocalSubMatrix()

Split Global

GetSubMatrix() / GetSubVector()

LocalToGlobal()

rank 0

rank 1

rank 2

20

DA Local FunctionDA Local Function

User-provided Function for Nonlinear Residual in 2D

PetscErrorCode (*lfunc)(DMDALocalInfo *info,
Field **x, Field **r,
void *ctx)

info All layout and numbering information
x The current solution

Notice that it is a multidimensional array
r The residual
ctx The user context passed to DMSetApplicationContext()

or to SNES

The local DMDA function is activated by calling

SNESSetDM(snes,dm)

SNESSetFunction(snes, r, SNESDAFormFunction, ctx)

21

DiscretizationDiscretization

Mapping PDEs to a (un)structured Grid

Can be arbitrarily complex (mathematically)

Neverending area of research

Popular Discretization Schemes

Finite Difference Method

Finite Volume Method

Finite Element Method

22

Finite Difference MethodsFinite Difference Methods

Finite Difference Methods: u′

Consider 1d-grid

Replace u′ ≈ u[i+1]−u[i]
h

or u′ ≈ u[i]−u[i−1]
h

or u′ ≈ u[i+1]−u[i−1]
2h

Finite Difference Methods: u′′

Naive: u′′ ≈ u′[i+1]−u′[i−1]
2h ≈ u[i+2]−2u[i]+u[i−2]

4h2

Use ’virtual’ grid nodes u′[i + 0.5], u′[i− 0.5] to obtain

u′′(xi) ≈
u[i + 1]− 2u[i] + u[i− 1]

h2

23

Finite Volume MethodsFinite Volume Methods

Finite Volume Methods

Suitable for unstructured grids

Popular for conservation laws

Integrate PDE over box, apply Gauss’ theorem

On regular grid: (Almost) same expression as finite differences

24

Finite Element MethodsFinite Element Methods

Finite Element Methods

Ansatz: u ≈
∑

i uiϕi

ϕi piecewise polynomials of degree p

Solve for ui

Adaptivity: in h and/or p possible

Rich mathematical theory

25

p-Bratu Residual Evaluationp-Bratu Residual Evaluation

PETSc-User-Code for p-Bratu Residual Equation

−∆u− λeu = 0

BratuResidualLocal(DMDALocalInfo *info,
Field **x,Field **f,
UserCtx *user)

{
/* Not Shown: Handle boundaries */
/* Compute over the interior points */
for(j = info->ys; j < info->ys+info->ym; j++) {

for(i = info->xs; i < info->xs+info->xm; i++) {
u = x[j][i];
u_xx = (2.0*u - x[j][i-1] - x[j][i+1])*hydhx;
u_yy = (2.0*u - x[j-1][i] - x[j+1][i])*hxdhy;
f[j][i] = u_xx + u_yy - hx*hy*lambda*exp(u);

}
}

}

$PETSC DIR/src/snes/examples/tutorials/ex15.c

26

PETScPETSc

Nonlinear Solvers

27

Newton iteration: Workhorse of SNESNewton iteration: Workhorse of SNES

Standard form of a nonlinear system

−∇ ·
(
|∇u|p−2∇u

)
− λeu = F(u) = 0

Iteration

Solve: J(u)w = −F(u)

Update: u+ ← u + w

Quadratically convergent near a root: |un+1 − u∗| ∈ O
(
|un − u∗|2

)
Picard is the same operation with a different J(u)

Jacobian Matrix for p-Bratu Equation

J(u)w ∼ −∇
[
(η1 + η′∇u⊗∇u)∇w

]
− λeuw

η′ =
p− 2

2
η/(ε2 + γ)

28

SNESSNES

Scalable Nonlinear Equation Solvers

Newton solvers: Line Search, Thrust Region

Inexact Newton-methods: Newton-Krylov

Matrix-Free Methods: With iterative linear solvers

How to get the Jacobian Matrix?

Implement it by hand

Let PETSc finite-difference it

Use Automatic Differentiation software

29

Nonlinear solvers in PETSc SNESNonlinear solvers in PETSc SNES

Nonlinear solvers in PETSc SNES

LS, TR Newton-type with line search and trust region

NRichardson Nonlinear Richardson, usually preconditioned

VIRS, VISS reduced space and semi-smooth methods for variational
inequalities

QN Quasi-Newton methods like BFGS

NGMRES Nonlinear GMRES

NCG Nonlinear Conjugate Gradients

GS Nonlinear Gauss-Seidel/multiplicative Schwarz sweeps

FAS Full approximation scheme (nonlinear multigrid)

MS Multi-stage smoothers, often used with FAS for hyperbolic
problems

Shell Your method, often used as a (nonlinear) preconditioner

30

SNES ParadigmSNES Paradigm

SNES Interface based upon Callback Functions

FormFunction(), set by SNESSetFunction()

FormJacobian(), set by SNESSetJacobian()

Evaluating the nonlinear residual F(x)

Solver calls the user’s function

User function gets application state through the ctx variable

PETSc never sees application data

31

SNES FunctionSNES Function

F(u) = 0

The user provided function which calculates the nonlinear residual has
signature

PetscErrorCode (*func)(SNES snes,
Vec x,Vec r,
void *ctx)

x - The current solution

r - The residual
ctx - The user context passed to SNESSetFunction()

Use this to pass application information, e.g. physical constants

32

SNES JacobianSNES Jacobian

User-provided function calculating the Jacobian Matrix

PetscErrorCode (*func)(SNES snes,Vec x,Mat *J,Mat *M,
MatStructure *flag,void *ctx)

x - The current solution

J - The Jacobian

M - The Jacobian preconditioning matrix (possibly J itself)
ctx - The user context passed to SNESSetFunction()

Use this to pass application information, e.g. physical constants
Possible MatStructure values are:

SAME_NONZERO_PATTERN
DIFFERENT_NONZERO_PATTERN

Alternatives

a builtin sparse finite difference approximation (“coloring”)

automatic differentiation (ADIC/ADIFOR)

33

Finite Difference JacobiansFinite Difference Jacobians

PETSc can compute and explicitly store a Jacobian

Dense
Activated by -snes_fd
Computed by SNESDefaultComputeJacobian()

Sparse via colorings
Coloring is created by MatFDColoringCreate()
Computed by SNESDefaultComputeJacobianColor()

Also Matrix-free Newton-Krylov via 1st-order FD possible

Activated by -snes_mf without preconditioning
Activated by -snes_mf_operator with user-defined preconditioning

Uses preconditioning matrix from SNESSetJacobian()

34

DMDA and SNESDMDA and SNES

Fusing Distributed Arrays and Nonlinear Solvers

Make DM known to SNES solver

SNESSetDM(snes,dm);

Attach residual evaluation routine

DMDASNESSetFunctionLocal(dm,INSERT_VALUES,
(DMDASNESFunction)FormFunctionLocal,

&user);

Ready to Roll

First solver implementation completed

Uses finite-differencing to obtain Jacobian Matrix

Rather slow, but scalable!

35

PETScPETSc

Matrices

36

PETSc Application IntegrationPETSc Application Integration

Sparse Matrices

The important data type when solving PDEs
Two main phases:

Filling with entries (assembly)
Application of its action (e.g. SpMV)

37

Matrix Memory PreallocationMatrix Memory Preallocation

PETSc sparse matrices are dynamic data structures
can add additional nonzeros freely

Dynamically adding many nonzeros
requires additional memory allocations

requires copies

can kill performance

Memory preallocation provides
the freedom of dynamic data structures

good performance

Easiest solution is to replicate the assembly code
Remove computation, but preserve the indexing code

Store set of columns for each row

Call preallocation routines for all datatypes
MatSeqAIJSetPreallocation()

MatMPIBAIJSetPreallocation()

Only the relevant data will be used

38

PETSc Application IntegrationPETSc Application Integration

Sequential Sparse Matrices
MatSeqAIJSetPreallocation(Mat A, int nz, int nnz[])

nz: expected number of nonzeros in any row

nnz(i): expected number of nonzeros in row i

39

PETSc Application IntegrationPETSc Application Integration

Parallel Sparse Matrix

Each process locally owns a submatrix of contiguous global rows

Each submatrix consists of diagonal and off-diagonal parts

proc 5

proc 4

proc 3

proc 2

proc 1

proc 0

diagonal blocks

offdiagonal blocks

MatGetOwnershipRange(Mat A,int *start,int *end)

start: first locally owned row of global matrix
end-1: last locally owned row of global matrix

40

PETSc Application IntegrationPETSc Application Integration

proc 5

proc 4

proc 3

proc 2

proc 1

proc 0

diagonal blocks

offdiagonal blocks

Proc 2 Proc 3
25 26 27 28 29
20 21 22 23 24
15 16 17 18 19
10 11 12 13 14
5 6 7 8 9
0 1 2 3 4

Proc 0 Proc 1
Natural numbering

Proc 2 Proc 3
21 22 23 28 29
18 19 20 26 27
15 16 17 24 25
6 7 8 13 14
3 4 5 11 12
0 1 2 9 10

Proc 0 Proc 1
PETSc numbering

41

PETSc Application IntegrationPETSc Application Integration

Parallel Sparse Matrix

MatMPIAIJSetPreallocation(Mat A, int dnz, int dnnz[],
int onz, int onnz[]

dnz: expected number of nonzeros in any row in the diagonal block

dnnz(i): expected number of nonzeros in row i in the diagonal block

onz: expected number of nonzeros in any row in the offdiagonal portion

onnz(i): expected number of nonzeros in row i in the offdiagonal portion

42

PETSc Application IntegrationPETSc Application Integration

Verifying Preallocation

Use runtime options
-mat_new_nonzero_location_err
-mat_new_nonzero_allocation_err

Use runtime option
-info

Output:

[proc #] Mat r i x s ize : %d X %d ; storage space : %d unneeded , %d used
[proc #] Number o f mal locs dur ing MatSetValues () i s %d

43

Block and Symmetric FormatsBlock and Symmetric Formats

BAIJ

Like AIJ, but uses static block size

Preallocation is like AIJ, but just one index per block

SBAIJ

Only stores upper triangular part

Preallocation needs number of nonzeros in upper triangular
parts of on- and off-diagonal blocks

MatSetValuesBlocked()

Better performance with blocked formats

Also works with scalar formats, if MatSetBlockSize() was called

Variants MatSetValuesBlockedLocal(),
MatSetValuesBlockedStencil()

Change matrix format at runtime, don’t need to touch assembly code

44

One Way to Set the Elements of a MatrixOne Way to Set the Elements of a Matrix

Simple 3-point stencil for 1D Laplacian

v[0] = -1.0; v[1] = 2.0; v[2] = -1.0;
if (rank == 0) {
for(row = 0; row < N; row++) {

cols[0] = row-1; cols[1] = row; cols[2] = row+1;
if (row == 0) {

MatSetValues(A,1,&row,2,&cols[1],&v[1],
INSERT_VALUES);

} else if (row == N-1) {
MatSetValues(A,1,&row,2,cols,v,INSERT_VALUES);

} else {
MatSetValues(A,1,&row,3,cols,v,INSERT_VALUES);

}
}

}
MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);
MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);

45

A Better Way to Set the Elements of a MatrixA Better Way to Set the Elements of a Matrix

A More Efficient Way

v[0] = -1.0; v[1] = 2.0; v[2] = -1.0;
for(row = start; row < end; row++) {
cols[0] = row-1; cols[1] = row; cols[2] = row+1;
if (row == 0) {

MatSetValues(A,1,&row,2,&cols[1],&v[1],
INSERT_VALUES);

} else if (row == N-1) {
MatSetValues(A,1,&row,2,cols,v,INSERT_VALUES);

} else {
MatSetValues(A,1,&row,3,cols,v,INSERT_VALUES);

}
}
MatAssemblyBegin(A, MAT_FINAL_ASSEMBLY);
MatAssemblyEnd(A, MAT_FINAL_ASSEMBLY);

Advantages

All ranks busy: Scalable!

Amount of code essentially unchanged

46

MatricesMatrices

Definition (Matrix)
A matrix is a linear transformation between finite dimensional vector
spaces.

Definition (Forming a matrix)
Forming or assembling a matrix means defining it’s action in terms of
entries (usually stored in a sparse format).

47

MatricesMatrices

Important Matrices

1. Sparse (e.g. discretization of a PDE operator)

2. Inverse of anything interesting B = A−1

3. Jacobian of a nonlinear function Jy = limε→0
F(x+εy)−F(x)

ε

4. Fourier transform F ,F−1

5. Other fast transforms, e.g. Fast Multipole Method

6. Low rank correction B = A + uvT

7. Schur complement S = D− CA−1B

8. Tensor product A =
∑

e Ae
x ⊗ Ae

y ⊗ Ae
z

9. Linearization of a few steps of an explicit integrator

47

MatricesMatrices

Important Matrices

1. Sparse (e.g. discretization of a PDE operator)

2. Inverse of anything interesting B = A−1

3. Jacobian of a nonlinear function Jy = limε→0
F(x+εy)−F(x)

ε

4. Fourier transform F ,F−1

5. Other fast transforms, e.g. Fast Multipole Method

6. Low rank correction B = A + uvT

7. Schur complement S = D− CA−1B

8. Tensor product A =
∑

e Ae
x ⊗ Ae

y ⊗ Ae
z

9. Linearization of a few steps of an explicit integrator

These matrices are dense. Never form them.

47

MatricesMatrices

Important Matrices

1. Sparse (e.g. discretization of a PDE operator)

2. Inverse of anything interesting B = A−1

3. Jacobian of a nonlinear function Jy = limε→0
F(x+εy)−F(x)

ε

4. Fourier transform F ,F−1

5. Other fast transforms, e.g. Fast Multipole Method

6. Low rank correction B = A + uvT

7. Schur complement S = D− CA−1B

8. Tensor product A =
∑

e Ae
x ⊗ Ae

y ⊗ Ae
z

9. Linearization of a few steps of an explicit integrator

These are not very sparse. Don’t form them.

47

MatricesMatrices

Important Matrices

1. Sparse (e.g. discretization of a PDE operator)

2. Inverse of anything interesting B = A−1

3. Jacobian of a nonlinear function Jy = limε→0
F(x+εy)−F(x)

ε

4. Fourier transform F ,F−1

5. Other fast transforms, e.g. Fast Multipole Method

6. Low rank correction B = A + uvT

7. Schur complement S = D− CA−1B

8. Tensor product A =
∑

e Ae
x ⊗ Ae

y ⊗ Ae
z

9. Linearization of a few steps of an explicit integrator

None of these matrices “have entries”

48

PETScPETSc

Iterative Solvers

49

MatricesMatrices

What can we do with a matrix that doesn’t have entries?

Krylov solvers for Ax = b

Krylov subspace: {b,Ab,A2b,A3b, . . . }
Convergence rate depends on the spectral properties of the matrix

For any popular Krylov method K, there is a matrix of size m, such
that K outperforms all other methods by a factor at least
O(
√

m) [Nachtigal et. al., 1992]

Typically...

The action y← Ax can be computed in O(m)

Aside from matrix multiply, the nth iteration requires at most O(mn)

50

GMRESGMRES

Brute force minimization of residual in {b,Ab,A2b, . . . }

1. Use Arnoldi to orthogonalize the nth subspace, producing

AQn = Qn+1Hn

2. Minimize residual in this space by solving the overdetermined system

Hnyn = e(n+1)
1

using QR-decomposition, updated cheaply at each iteration.

Properties

Converges in n steps for all right hand sides if there exists a
polynomial of degree n such that ‖pn(A)‖ < tol and pn(0) = 1.

Residual is monotonically decreasing, robust in practice

Restarted variants are used to bound memory requirements

51

PETSc SolversPETSc Solvers

Linear Solvers - Krylov Methods

Using PETSc linear algebra, just add:

KSPSetOperators(KSP ksp, Mat A, Mat M, MatStructure flag)
KSPSolve(KSP ksp, Vec b, Vec x)

Can access subobjects

KSPGetPC(KSP ksp, PC *pc)

Preconditioners must obey PETSc interface
Basically just the KSP interface

Can change solver dynamically from the command line, -ksp_type

52

Linear solvers in PETSc KSPLinear solvers in PETSc KSP

Linear solvers in PETSc KSP (Excerpt)

Richardson

Chebychev

Conjugate Gradient

BiConjugate Gradient

Generalized Minimum Residual Variants

Transpose-Free Quasi-Minimum Residual

Least Squares Method

Conjugate Residual

53

PETScPETSc

Preconditioners

54

PreconditioningPreconditioning

Idea: improve the conditioning of the Krylov operator

Left preconditioning
(P−1A)x = P−1b

{P−1b, (P−1A)P−1b, (P−1A)2P−1b, . . . }

Right preconditioning
(AP−1)Px = b

{b, (P−1A)b, (P−1A)2b, . . . }

The product P−1A or AP−1 is not formed.

A preconditioner P is a method for constructing a matrix (just a linear
function, not assembled!) P−1 = P(A,Ap) using a matrix A and extra
information Ap, such that the spectrum of P−1A (or AP−1) is well-behaved.

55

PreconditioningPreconditioning

Definition (Preconditioner)
A preconditioner P is a method for constructing a matrix P−1 = P(A,Ap)
using a matrix A and extra information Ap, such that the spectrum of P−1A
(or AP−1) is well-behaved.

P−1 is dense, P is often not available and is not needed

A is rarely used by P, but Ap = A is common

Ap is often a sparse matrix, the “preconditioning matrix”

Matrix-based: Jacobi, Gauss-Seidel, SOR, ILU(k), LU

Parallel: Block-Jacobi, Schwarz, Multigrid, FETI-DP, BDDC

Indefinite: Schur-complement, Domain Decomposition, Multigrid

56

Questions to ask when you see a matrixQuestions to ask when you see a matrix

1. What do you want to do with it?
Multiply with a vector
Solve linear systems or eigen-problems

2. How is the conditioning/spectrum?
distinct/clustered eigen/singular values?
symmetric positive definite (σ(A) ⊂ R+)?
nonsymmetric definite (σ(A) ⊂ {z ∈ C : Re[z] > 0})?
indefinite?

3. How dense is it?
block/banded diagonal?
sparse unstructured?
denser than we’d like?

4. Is there a better way to compute Ax?

5. Is there a different matrix with similar spectrum, but nicer properties?

6. How can we precondition A?

56

Questions to ask when you see a matrixQuestions to ask when you see a matrix

1. What do you want to do with it?
Multiply with a vector
Solve linear systems or eigen-problems

2. How is the conditioning/spectrum?
distinct/clustered eigen/singular values?
symmetric positive definite (σ(A) ⊂ R+)?
nonsymmetric definite (σ(A) ⊂ {z ∈ C : Re[z] > 0})?
indefinite?

3. How dense is it?
block/banded diagonal?
sparse unstructured?
denser than we’d like?

4. Is there a better way to compute Ax?

5. Is there a different matrix with similar spectrum, but nicer properties?

6. How can we precondition A?

57

RelaxationRelaxation

Split into lower, diagonal, upper parts: A = L + D + U

Jacobi
Cheapest preconditioner: P−1 = D−1

Successive over-relaxation (SOR)

(
L +

1
ω

D
)

xn+1 =

[(
1
ω
− 1
)

D− U
]

xn + ωb

P−1 = k iterations starting with x0 = 0

Implemented as a sweep

ω = 1 corresponds to Gauss-Seidel

Very effective at removing high-frequency components of residual

58

FactorizationFactorization

Two phases

symbolic factorization: find where fill occurs, only uses sparsity pattern
numeric factorization: compute factors

LU decomposition

Ultimate preconditioner
Expensive, for m× m sparse matrix with bandwidth b, traditionally
requires O(mb2) time and O(mb) space.

Bandwidth scales as m
d−1

d in d-dimensions
Optimal in 2D: O(m · log m) space, O(m3/2) time
Optimal in 3D: O(m4/3) space, O(m2) time

Symbolic factorization is problematic in parallel

Incomplete LU

Allow a limited number of levels of fill: ILU(k)
Only allow fill for entries that exceed threshold: ILUT
Usually poor scaling in parallel
No guarantees

59

1-level Domain decomposition1-level Domain decomposition

Domain size L, subdomain size H, element size h

Overlapping/Schwarz

Solve Dirichlet problems on overlapping subdomains

No overlap: its ∈ O
(

L√
Hh

)
Overlap δ: its ∈

(
L√
Hδ

)
Neumann-Neumann

Solve Neumann problems on non-overlapping subdomains

its ∈ O
(

L
H (1 + log H

h)
)

Tricky null space issues (floating subdomains)

Need subdomain matrices, net globally assembled matrix.

Multilevel variants knock off the leading L
H

Both overlapping and nonoverlapping with this bound

60

MultigridMultigrid

Hierarchy: Interpolation and restriction operators

I↑ : Xcoarse → Xfine I↓ : Xfine → Xcoarse

Geometric: define problem on multiple levels, use grid to compute
hierarchy
Algebraic: define problem only on finest level, use matrix structure to
build hierarchy

Galerkin approximation
Assemble this matrix: Acoarse = I↓AfineI↑

Application of multigrid preconditioner (V-cycle)

Apply pre-smoother on fine level (any preconditioner)
Restrict residual to coarse level with I↓
Solve on coarse level Acoarsex = r
Interpolate result back to fine level with I↑
Apply post-smoother on fine level (any preconditioner)

61

Multigrid convergence propertiesMultigrid convergence properties

Textbook: P−1A is spectrally equivalent to identity
Constant number of iterations to converge up to discretization error

Most theory applies to SPD systems
variable coefficients (e.g. discontinuous): low energy interpolants
mesh- and/or physics-induced anisotropy: semi-coarsening/line
smoothers
complex geometry: difficult to have meaningful coarse levels

Deeper algorithmic difficulties
nonsymmetric (e.g. advection, shallow water, Euler)
indefinite (e.g. incompressible flow, Helmholtz)

Performance considerations
Aggressive coarsening is critical in parallel
Most theory uses SOR smoothers, ILU often more robust
Coarsest level usually solved semi-redundantly with direct solver

Multilevel Schwarz is essentially the same with different language
assume strong smoothers, emphasize aggressive coarsening

62

Splitting for MultiphysicsSplitting for Multiphysics

[
A B
C D

] [
x
y

]
=

[
f
g

]

Relaxation: -pc_fieldsplit_type
[additive,multiplicative,symmetric_multiplicative][

A
D

]−1 [
A
C D

]−1 [
A

1

]−1
(

1−
[

A B
1

] [
A
C D

]−1
)

Gauss-Seidel inspired, works when fields are loosely coupled

Factorization: -pc_fieldsplit_type schur[
A B

S

]−1 [1
CA−1 1

]−1

, S = D− CA−1B

robust (exact factorization), can often drop lower block
how to precondition S which is usually dense?

interpret as differential operators, use approximate commutators

63

PETScPETSc

Debugging and Profiling

64

PETSc DebuggingPETSc Debugging

By default, a debug build is provided

Launch the debugger
-start_in_debugger [gdb,dbx,noxterm]
-on_error_attach_debugger [gdb,dbx,noxterm]

Attach the debugger only to some parallel processes
-debugger_nodes 0,1

Set the display (often necessary on a cluster)
-display :0

65

Debugging TipsDebugging Tips

Put a breakpoint in PetscError() to catch errors as they occur

PETSc tracks memory overwrites at both ends of arrays
The CHKMEMQ macro causes a check of all allocated memory
Track memory overwrites by bracketing them with CHKMEMQ

PETSc checks for leaked memory
Use PetscMalloc() and PetscFree() for all allocation
Print unfreed memory on PetscFinalize() with -malloc_dump

Simply the best tool today is Valgrind
It checks memory access, cache performance, memory usage, etc.
http://www.valgrind.org
Pass -malloc 0 to PETSc when running under Valgrind
Might need --trace-children=yes when running under MPI
--track-origins=yes handy for uninitialized memory

http://www.valgrind.org

66

PETSc ProfilingPETSc Profiling

Profiling

Use -log_summary for a performance profile
Event timing
Event flops
Memory usage
MPI messages

Call PetscLogStagePush() and PetscLogStagePop()

User can add new stages
Call PetscLogEventBegin() and PetscLogEventEnd()

User can add new events

Call PetscLogFlops() to include your flops

67

PETSc ProfilingPETSc Profiling

Reading -log summary
Max Max/Min Avg Total

Time (sec): 1.548e+02 1.00122 1.547e+02
Objects: 1.028e+03 1.00000 1.028e+03
Flops: 1.519e+10 1.01953 1.505e+10 1.204e+11
Flops/sec: 9.814e+07 1.01829 9.727e+07 7.782e+08
MPI Messages: 8.854e+03 1.00556 8.819e+03 7.055e+04
MPI Message Lengths: 1.936e+08 1.00950 2.185e+04 1.541e+09
MPI Reductions: 2.799e+03 1.00000

Also a summary per stage

Memory usage per stage (based on when it was allocated)

Time, messages, reductions, balance, flops per event per stage

Always send -log_summary when asking
performance questions on mailing list

68

PETSc ProfilingPETSc Profiling

Event Count Time (sec) Flops --- Global --- --- Stage --- Total
Max Ratio Max Ratio Max Ratio Mess Avg len Reduct %T %F %M %L %R %T %F %M %L %R Mflop/s

--
--- Event Stage 1: Full solve
VecDot 43 1.0 4.8879e-02 8.3 1.77e+06 1.0 0.0e+00 0.0e+00 4.3e+01 0 0 0 0 0 0 0 0 0 1 73954
VecMDot 1747 1.0 1.3021e+00 4.6 8.16e+07 1.0 0.0e+00 0.0e+00 1.7e+03 0 1 0 0 14 1 1 0 0 27 128346
VecNorm 3972 1.0 1.5460e+00 2.5 8.48e+07 1.0 0.0e+00 0.0e+00 4.0e+03 0 1 0 0 31 1 1 0 0 61 112366
VecScale 3261 1.0 1.6703e-01 1.0 3.38e+07 1.0 0.0e+00 0.0e+00 0.0e+00 0 0 0 0 0 0 0 0 0 0 414021
VecScatterBegin 4503 1.0 4.0440e-01 1.0 0.00e+00 0.0 6.1e+07 2.0e+03 0.0e+00 0 0 50 26 0 0 0 96 53 0 0
VecScatterEnd 4503 1.0 2.8207e+00 6.4 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00 0 0 0 0 0 0 0 0 0 0 0
MatMult 3001 1.0 3.2634e+01 1.1 3.68e+09 1.1 4.9e+07 2.3e+03 0.0e+00 11 22 40 24 0 22 44 78 49 0 220314
MatMultAdd 604 1.0 6.0195e-01 1.0 5.66e+07 1.0 3.7e+06 1.3e+02 0.0e+00 0 0 3 0 0 0 1 6 0 0 192658
MatMultTranspose 676 1.0 1.3220e+00 1.6 6.50e+07 1.0 4.2e+06 1.4e+02 0.0e+00 0 0 3 0 0 1 1 7 0 0 100638
MatSolve 3020 1.0 2.5957e+01 1.0 3.25e+09 1.0 0.0e+00 0.0e+00 0.0e+00 9 21 0 0 0 18 41 0 0 0 256792
MatCholFctrSym 3 1.0 2.8324e-04 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00 0 0 0 0 0 0 0 0 0 0 0
MatCholFctrNum 69 1.0 5.7241e+00 1.0 6.75e+08 1.0 0.0e+00 0.0e+00 0.0e+00 2 4 0 0 0 4 9 0 0 0 241671
MatAssemblyBegin 119 1.0 2.8250e+00 1.5 0.00e+00 0.0 2.1e+06 5.4e+04 3.1e+02 1 0 2 24 2 2 0 3 47 5 0
MatAssemblyEnd 119 1.0 1.9689e+00 1.4 0.00e+00 0.0 2.8e+05 1.3e+03 6.8e+01 1 0 0 0 1 1 0 0 0 1 0
SNESSolve 4 1.0 1.4302e+02 1.0 8.11e+09 1.0 6.3e+07 3.8e+03 6.3e+03 51 50 52 50 50 99100 99100 97 113626
SNESLineSearch 43 1.0 1.5116e+01 1.0 1.05e+08 1.1 2.4e+06 3.6e+03 1.8e+02 5 1 2 2 1 10 1 4 4 3 13592
SNESFunctionEval 55 1.0 1.4930e+01 1.0 0.00e+00 0.0 1.8e+06 3.3e+03 8.0e+00 5 0 1 1 0 10 0 3 3 0 0
SNESJacobianEval 43 1.0 3.7077e+01 1.0 7.77e+06 1.0 4.3e+06 2.6e+04 3.0e+02 13 0 4 24 2 26 0 7 48 5 429
KSPGMRESOrthog 1747 1.0 1.5737e+00 2.9 1.63e+08 1.0 0.0e+00 0.0e+00 1.7e+03 1 1 0 0 14 1 2 0 0 27 212399
KSPSetup 224 1.0 2.1040e-02 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 3.0e+01 0 0 0 0 0 0 0 0 0 0 0
KSPSolve 43 1.0 8.9988e+01 1.0 7.99e+09 1.0 5.6e+07 2.0e+03 5.8e+03 32 49 46 24 46 62 99 88 48 88 178078
PCSetUp 112 1.0 1.7354e+01 1.0 6.75e+08 1.0 0.0e+00 0.0e+00 8.7e+01 6 4 0 0 1 12 9 0 0 1 79715
PCSetUpOnBlocks 1208 1.0 5.8182e+00 1.0 6.75e+08 1.0 0.0e+00 0.0e+00 8.7e+01 2 4 0 0 1 4 9 0 0 1 237761
PCApply 276 1.0 7.1497e+01 1.0 7.14e+09 1.0 5.2e+07 1.8e+03 5.1e+03 25 44 42 20 41 49 88 81 39 79 200691

69

PETSc ProfilingPETSc Profiling

Communication Costs
Reductions: usually part of Krylov method, latency limited

VecDot
VecMDot
VecNorm
MatAssemblyBegin
Change algorithm (e.g. IBCGS)

Point-to-point (nearest neighbor), latency or bandwidth
VecScatter
MatMult
PCApply
MatAssembly
SNESFunctionEval
SNESJacobianEval
Compute subdomain boundary fluxes redundantly
Ghost exchange for all fields at once
Better partition

70

ConclusionsConclusions

PETSc can help You

solve algebraic and DAE problems in your application area

rapidly develop efficient parallel code, can start from examples

develop new solution methods and data structures

debug and analyze performance

advice on software design, solution algorithms, and performance

petsc-{users,dev,maint}@mcs.anl.gov

You can help PETSc

report bugs and inconsistencies, or if you think there is a better way

tell us if the documentation is inconsistent or unclear

consider developing new algebraic methods as plugins, contribute if
your idea works

	p-Bratu Equation
	Distributed Arrays
	Nonlinear Solvers
	Matrices in PETSc
	Iterative Solvers
	Preconditioners
	Debugging and Profiling
	Conclusions

