PETSc

Portable, Extensible Toolkit for Scientific Computation

Karl Rupp
rupp@mcs.anl.gov

Mathematics and Computer Science Division
Argonne National Laboratory

Tutorial at Segundo Encuentro Nacional de Computación
de Alto Rendimiento para Aplicaciones Científicas

May 7th, 2013

Before we start...

Goal of this Workshop
 YOU are here to learn new things about HPC

Ask Questions
Tell me if you do not understand
Ask for further details
Don't be shy

Table of Contents

p-Bratu Equation

Distributed Arrays

Nonlinear Solvers

Matrices, Linear Solvers

Preconditioners

PETSc

p-Bratu Equation

The \mathfrak{p}-Bratu Equation

The "Hello World of PDEs"

Poisson's Equation

$$
-\nabla \cdot(\nabla u)=f,
$$

Leads to symmetric, positive definite system matrices Commonly used in numerical analysis (corner effects, etc.)

More General Form
With diffusivity tensor η :

$$
-\nabla \cdot(\eta \nabla u)=f,
$$

Typically: $\eta>\delta>0$
η can be discontinous (material boundaries)
Reduced regularity of solution

The \mathfrak{p}-Bratu Equation

Additional Volume Term

Consider

$$
-\nabla \cdot(\eta \nabla u)-\lambda e^{u}-f=0
$$

Canonical nonlinear form
e^{u} has "wrong sign": turning point at $\lambda_{\text {crit }}$

Another Tweak

Diffusivity tensor η depends on u, e.g.:

$$
\eta=\frac{1}{2}|\nabla u|^{2}
$$

Singular or degenerate when $\nabla u=0$.

The \mathfrak{p}-Bratu Equation

\mathfrak{p}-Bratu Equation

2-dimensional model problem

$$
-\nabla \cdot\left(|\nabla u|^{\mathfrak{p}-2} \nabla u\right)-\lambda e^{u}-f=0, \quad 1 \leq \mathfrak{p} \leq \infty, \quad \lambda<\lambda_{\text {crit }}(\mathfrak{p})
$$

Singular or degenerate when $\nabla u=0$, turning point at $\lambda_{\text {crit }}$.

Regularized Variant

Remove singularity of η using a parameter ε :

$$
\begin{aligned}
-\nabla \cdot(\eta \nabla u)-\lambda e^{u}-f & =0 \\
\eta(\gamma)=\left(\epsilon^{2}+\gamma\right)^{\frac{p-2}{2}} \quad \gamma(u) & =\frac{1}{2}|\nabla u|^{2}
\end{aligned}
$$

Physical interpretation: diffusivity tensor flattened in direction ∇u

PETSc

Distributed Arrays

Distributed Array

Interface for topologically structured grids

Defines (topological part of) a finite-dimensional function space Get an element from this space: DMCreateGlobalVector()

Provides parallel layout

Refinement and coarsening

```
DMRefineHierarchy()
```

Ghost value coherence

```
DMGlobalToLocalBegin()
```

Matrix preallocation

```
DMCreateMatrix() (formerly DMGetMatrix())
```


Ghost Values

To evaluate a local function $f(x)$, each process requires

its local portion of the vector x
its ghost values, bordering portions of x owned by neighboring processes

- Local Node
- Ghost Node

DMDA Global Numberings

Proc 2			Proc 3	
25	26	27	28	29
20	21	22	23	24
15	16	17	18	19
10	11	12	13	14
5	6	7	8	9
0	1	2	3	4
Proc 0			Proc 1	

Natural numbering

Proc 2			Proc 3	
21	22	23	28	29
18	19	20	26	27
15	16	17	24	25
6	7	8	13	14
3	4	5	11	12
0	1	2	9	10
Proc 0				Proc 1
PETSc numbering				

DMDA Global vs. Local Numbering

Global: Each vertex has a unique id, belongs on a unique process Local: Numbering includes vertices from neighboring processes

These are called ghost vertices

Proc 2			Proc 3	
X	X	X	X	X
X	X	X	X	X
12	13	14	15	X
8	9	10	11	X
$\mathbf{4}$	5	6	7	X
0	1	2	3	X
Proc 0			Proc 1	

Local numbering

Proc 2			Proc 3	
21	22	23	28	29
18	19	20	26	27
15	16	17	24	25
6	7	8	13	14
3	4	5	11	12
0	1	2	9	10
Proc 0			Proc 1	

Global numbering

DM Vectors

The DM object contains only layout (topology) information All field data is contained in PETSc vecs

Global vectors are parallel
Each process stores a unique local portion
DMCreateGlobalVector (DM dm, Vec *gvec)
Local vectors are sequential (and usually temporary)
Each process stores its local portion plus ghost values
DMCreateLocalVector (DM dm, Vec *lvec) includes ghost values!

Coordinate vectors store the mesh geometry

```
DMDAGetCoordinates(DM dm, Vec *coords)
```

Can be manipulated with their own DMDA
DMDAGetCoordinateDA (DM dm,DM *cda)

Updating Ghosts

Two-step Process for Updating Ghosts

enables overlapping computation and communication

DMGlobalToLocalBegin(dm, gvec, mode, lvec)
gvec provides the data
mode is either INSERT_VALUES Or ADD_VALUES
lvec holds the local and ghost values

DMGlobalToLocalEnd(dm, gvec, mode, lvec)
Finishes the communication

Reverse Process
Via DMLocalToGlobalBegin() and DMLocalToGlobalEnd().

DMDA Stencils

Available Stencils

Creating a DMDA

DMDACreate $2 d(c o m m, ~ x b d y, ~ y b d y, ~ t y p e, ~ M, ~ N, ~ m, ~ n, ~$ dof, $s, \operatorname{lm}[], \ln [], D A * d a)$
xbdy, ybdy: Specifies periodicity or ghost cells
DMDA_BOUNDARY_NONE, DMDA_BOUNDARY_GHOSTED,
DMDA_BOUNDARY_MIRROR, DMDA_BOUNDARY_PERIODIC
type
Specifies stencil: DMDA_STENCIL_BOX Or DMDA_STENCIL_STAR
M, N
Number of grid points in x / y-direction
m, n
Number of processes in x / y-direction
dof
Degrees of freedom per node
S
The stencil width
$1 \mathrm{~m}, \ln$
Alternative array of local sizes
Use nuli for the default

Working with the Local Form

Wouldn't it be nice if we could just write our code for the natural numbering?

Proc 2			Proc 3	
25	26	27	28	29
20	21	22	23	24
15	16	17	18	19
10	11	12	13	14
5	6	7	8	9
0	1	2	3	4
Proc 0			Proc 1	

Natural numbering

Proc 2			Proc 3	
21	22	23	28	29
18	19	20	26	27
15	16	17	24	25
6	7	8	13	14
3	4	5	11	12
0	1	2	9	10
Proc 0			Proc 1	

PETSc numbering

Working with the Local Form

Wouldn't it be nice if we could just write our code for the natural numbering?

Yes, that's what DMDAVecGetArray () is for.

DMDA offers local callback functions

```
FormFunctionLocal(), set by DMDASetLocalFunction()
FormJacobianLocal(), set by DMDASetLocalJacobian()
```

Evaluating the nonlinear residual $F(x)$
Each process evaluates the local residual PETSc assembles the global residual automatically

Uses DMLocalToGlobal() method

Thinking of Extensions

Multiple Unknowns per Grid Node
Example 1: Displacements u_{x}, u_{y}
Example 2: Velocity components, Pressure
Typical in a multiphysics setting

Multiple Unknowns in a Distributed Setting
Robust abstract concepts important
Lots of bookkeeping
All done by PETSc

Thinking of Extensions

DA Local Function

User-provided Function for Nonlinear Residual in 2D

```
PetscErrorCode (*lfunc)(DMDALocalInfo *info,
    Field **x, Field **r,
    void *ctx)
```

info All layout and numbering information
$x \quad$ The current solution Notice that it is a multidimensional array
$r \quad$ The residual
ctx The user context passed to DMSetApplicationContext () or to SNES

The local DMDA function is activated by calling

```
SNESSetDM(snes,dm)
SNESSetFunction(snes, r, SNESDAFormFunction, ctx)
```


Discretization

Mapping PDEs to a (un)structured Grid
Can be arbitrarily complex (mathematically)
Neverending area of research
Popular Discretization Schemes
Finite Difference Method
Finite Volume Method
Finite Element Method

Finite Difference Methods

Finite Difference Methods: u^{\prime}
Consider 1d-grid
Replace $u^{\prime} \approx \frac{u[i+1]-u[i]}{h}$
or $u^{\prime} \approx \frac{u[i]-u[i-1]}{h}$
or $u^{\prime} \approx \frac{u[i+1]-u[i-1]}{2 h}$
Finite Difference Methods: $u^{\prime \prime}$
Naive: $u^{\prime \prime} \approx \frac{u^{\prime}[i+1]-u^{\prime}[i-1]}{2 h} \approx \frac{u[i+2]-2 u[i]+u[i-2]}{4 h^{2}}$
Use 'virtual' grid nodes $u^{\prime}[i+0.5], u^{\prime}[i-0.5]$ to obtain

$$
u^{\prime \prime}\left(x_{i}\right) \approx \frac{u[i+1]-2 u[i]+u[i-1]}{h^{2}}
$$

Finite Volume Methods

Finite Volume Methods
Suitable for unstructured grids
Popular for conservation laws
Integrate PDE over box, apply Gauss' theorem
On regular grid: (Almost) same expression as finite differences

Finite Element Methods

Finite Element Methods

Ansatz: $u \approx \sum_{i} u_{i} \varphi_{i}$
φ_{i} piecewise polynomials of degree p
Solve for u_{i}
Adaptivity: in h and/or p possible
Rich mathematical theory

PETSc-User-Code for \mathfrak{p}-Bratu Residual Equation

$$
-\Delta u-\lambda e^{u}=0
$$

```
BratuResidualLocal(DMDALocalInfo *info,
    Field **x,Field **f,
    UserCtx *user)
{
    /* Not Shown: Handle boundaries */
    /* Compute over the interior points */
    for(j = info->ys; j < info->ys+info->ym; j++) {
        for(i = info->xs; i < info->xs+info->xm; i++) {
            u = x[j][i];
            u_xx = (2.0*u - x[j][i-1] - x[j][i+1])*hydhx;
            u_yy = (2.0*u - x[j-1][i] - x[j+1][i])*hxdhy;
            f[j][i] = u_xx + u_yy - hx*hy*lambda*exp(u);
        }
    }
}
```

\$PETSC_DIR/src/snes/examples/tutorials/ex15.c

PETSc

Nonlinear Solvers

Newton iteration: Workhorse of SNES

Standard form of a nonlinear system

$$
-\nabla \cdot\left(|\nabla u|^{\mathfrak{p}-2} \nabla u\right)-\lambda e^{u}=F(u)=0
$$

Iteration

$$
\text { Solve: } \quad J(u) w=-F(u)
$$

Update: $\quad u^{+} \leftarrow u+w$

Quadratically convergent near a root: $\left|u^{n+1}-u^{*}\right| \in \mathcal{O}\left(\left|u^{n}-u^{*}\right|^{2}\right)$
Picard is the same operation with a different $J(u)$
Jacobian Matrix for \mathfrak{p}-Bratu Equation

$$
\begin{gathered}
J(u) w \sim-\nabla\left[\left(\eta \mathbf{1}+\eta^{\prime} \nabla u \otimes \nabla u\right) \nabla w\right]-\lambda e^{u} w \\
\eta^{\prime}=\frac{\mathfrak{p}-2}{2} \eta /\left(\epsilon^{2}+\gamma\right)
\end{gathered}
$$

SNES

Scalable Nonlinear Equation Solvers

Newton solvers: Line Search, Thrust Region
Inexact Newton-methods: Newton-Krylov
Matrix-Free Methods: With iterative linear solvers
How to get the Jacobian Matrix?
Implement it by hand
Let PETSc finite-difference it
Use Automatic Differentiation software

Nonlinear solvers in PETSc SNES

Nonlinear solvers in PETSc SNES

LS, TR Newton-type with line search and trust region
NRichardson Nonlinear Richardson, usually preconditioned VIRS, VISS reduced space and semi-smooth methods for variational inequalities

QN Quasi-Newton methods like BFGS
NGMRES Nonlinear GMRES
NCG Nonlinear Conjugate Gradients
GS Nonlinear Gauss-Seidel/multiplicative Schwarz sweeps
FAS Full approximation scheme (nonlinear multigrid)
MS Multi-stage smoothers, often used with FAS for hyperbolic problems
Shell Your method, often used as a (nonlinear) preconditioner

SNES Paradigm

SNES Interface based upon Callback Functions

```
FormFunction(), set by SNESSetFunction()
FormJacobian(), set by SNESSetJacobian()
```

Evaluating the nonlinear residual $F(x)$
Solver calls the user's function
User function gets application state through the ctx variable
PETSc never sees application data

SNES Function

$$
F(u)=0
$$

The user provided function which calculates the nonlinear residual has signature

```
PetscErrorCode (*func)(SNES snes,
    Vec x,Vec r,
    void *ctx)
```

x - The current solution
r - The residual
ctx - The user context passed to SNESSetFunction()
Use this to pass application information, e.g. physical constants

SNES Jacobian

User-provided function calculating the Jacobian Matrix

```
PetscErrorCode (*func)(SNES snes,Vec x,Mat *J,Mat *M,
    MatStructure *flag,void *ctx)
```

x - The current solution
J - The Jacobian
m - The Jacobian preconditioning matrix (possibly J itself)
ctx - The user context passed to SNESSetFunction()
Use this to pass application information, e.g. physical constants
Possible Mat Structure values are:

```
SAME_NONZERO_PATTERN
DIFFERENT_NONZERO_PATTERN
```


Alternatives

a builtin sparse finite difference approximation ("coloring") automatic differentiation (ADIC/ADIFOR)

Finite Difference Jacobians

PETSc can compute and explicitly store a Jacobian
Dense
Activated by -snes_fd
Computed by SNESDefaultComputeJacobian()
Sparse via colorings
Coloring is created by MatFDColoringCreate ()
Computed by SNESDefaultComputeJacobianColor()

Also Matrix-free Newton-Krylov via 1st-order FD possible
Activated by -snes_mf without preconditioning Activated by -snes_mf_operator with user-defined preconditioning

Uses preconditioning matrix from SNESSetJacobian ()

DMDA and SNES

Fusing Distributed Arrays and Nonlinear Solvers

Make DM known to SNES solver

```
SNESSetDM(snes,dm);
```

Attach residual evaluation routine

```
DMDASNESSetFunctionLocal(dm,INSERT_VALUES,
    (DMDASNESFunction) FormFunctionLocal,
        &user);
```

Ready to Roll
First solver implementation completed
Uses finite-differencing to obtain Jacobian Matrix
Rather slow, but scalable!

PETSc

Matrices

PETSc Application Integration

Sparse Matrices

The important data type when solving PDEs
Two main phases:
Filling with entries (assembly)
Application of its action (e.g. SpMV)

Matrix Memory Preallocation

PETSc sparse matrices are dynamic data structures can add additional nonzeros freely

Dynamically adding many nonzeros requires additional memory allocations requires copies can kill performance

Memory preallocation provides
the freedom of dynamic data structures good performance

Easiest solution is to replicate the assembly code Remove computation, but preserve the indexing code Store set of columns for each row

Call preallocation routines for all datatypes
MatSeqAIJSetPreallocation ()
MatMPIBAIJSetPreallocation()
Only the relevant data will be used

PETSc Application Integration

Sequential Sparse Matrices

MatSeqAIJSetPreallocation (Mat A, int $n z$, int $n n z[])$
$n z$: expected number of nonzeros in any row nnz(i): expected number of nonzeros in row i

PETSc Application Integration

Parallel Sparse Matrix

Each process locally owns a submatrix of contiguous global rows Each submatrix consists of diagonal and off-diagonal parts

Proc 2			Proc 3	
21	22	23	28	29
18	19	20	26	27
15	16	17	24	25
6	7	8	13	14
3	4	5	11	12
0	1	2	9	10
Proc 0			Proc 1	

PETSc numbering

PETSc Application Integration

Parallel Sparse Matrix

```
MatMPIAIJSetPreallocation(Mat A, int dnz, int dnnz[],
    int onz, int onnz[]
```

dnz: expected number of nonzeros in any row in the diagonal block dnnz(i): expected number of nonzeros in row in the diagonal block onz: expected number of nonzeros in any row in the offdiagonal portion onnz(i): expected number of nonzeros in row i in the offdiagonal portion

PETSc Application Integration

Verifying Preallocation

Use runtime options

```
-mat_new_nonzero_location_err
-mat_new_nonzero_allocation_err
```

Use runtime option
-info
Output:

```
[proc #] Matrix size: %d X %d; storage space: %d unneeded, %d used
[proc #] Number of mallocs during MatSetValues( ) is %d
```

```
[merlin] mpirun ex2 -log_info
[0]MatAssemblyEnd_SeqAIJ:Matrix size: 56 X 56; storage space:
[0] 310 unneeded, 250 used
[0] MatAssemblyEnd_SeqAIJ :Number of mallocs during MatsetValues() is 0
[0]MatAssemblyEnd_SeqAIJ:Most nonzeros in any row is 5
[0]Mat_AIJ_CheckInode: Found 56 nodes out of 56 rows. Not using Inode routines
[0]Mat_AIJ_CheckInode: Found 56 nodes out of 56 rows. Not using Inode routines
Norm o\overline{f error 0.000156044 iterations }6
[0]PetscFinalize:PETSc successfully ended!
```


Block and Symmetric Formats

BAIJ

Like AlJ, but uses static block size
Preallocation is like AIJ, but just one index per block

SBAIJ

Only stores upper triangular part
Preallocation needs number of nonzeros in upper triangular parts of on- and off-diagonal blocks

MatSetValuesBlocked()

Better performance with blocked formats
Also works with scalar formats, if MatSetBlockSize () was called
Variants MatSetValuesBlockedLocal(),
MatSetValuesBlockedStencil()
Change matrix format at runtime, don't need to touch assembly code

One Way to Set the Elements of a Matrix

Simple 3-point stencil for 1D Laplacian

```
v[0] = -1.0; v[1] = 2.0; v[2] = -1.0;
if (rank == 0) {
    for(row = 0; row < N; row++) {
        cols[0] = row-1; cols[1] = row; cols[2] = row+1;
        if (row == 0) {
            MatSetValues(A, 1, &row, 2, &cols[1], &v[1],
                                    INSERT_VALUES);
        } else if (row == N-1) {
            MatSetValues(A,1,&row, 2, cols,v,INSERT_VALUES);
        } else {
            MatSetValues(A,1,&row, 3,cols,v,INSERT_VALUES);
        }
    }
}
MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);
MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);
```


A Better Way to Set the Elements of a Matrix

A More Efficient Way

```
v[0] = -1.0; v[1] = 2.0; v[2] = -1.0;
for(row = start; row < end; row++) {
    cols[0] = row-1; cols[1] = row; cols[2] = row+1;
    if (row == 0) {
        MatSetValues(A,1,&row,2,&cols[1],&v[1],
        INSERT_VALUES);
    } else if (row == N-1) {
        MatSetValues(A,1,&row,2,cols,v,INSERT_VALUES);
    } else {
        MatSetValues(A,1,&row, 3,cols,v,INSERT_VALUES);
    }
}
MatAssemblyBegin(A, MAT_FINAL_ASSEMBLY);
MatAssemblyEnd(A, MAT_FINAL_ASSEMBLY);
```

Advantages
All ranks busy: Scalable!
Amount of code essentially unchanged

Matrices

Definition (Matrix)
A matrix is a linear transformation between finite dimensional vector spaces.

Definition (Forming a matrix)
Forming or assembling a matrix means defining it's action in terms of entries (usually stored in a sparse format).

Matrices

Important Matrices

1. Sparse (e.g. discretization of a PDE operator)
2. Inverse of anything interesting $B=A^{-1}$
3. Jacobian of a nonlinear function $J y=\lim _{\epsilon \rightarrow 0} \frac{F(x+\epsilon y)-F(x)}{\epsilon}$
4. Fourier transform $\mathcal{F}, \mathcal{F}^{-1}$
5. Other fast transforms, e.g. Fast Multipole Method
6. Low rank correction $B=A+u v^{T}$
7. Schur complement $S=D-C A^{-1} B$
8. Tensor product $A=\sum_{e} A_{x}^{e} \otimes A_{y}^{e} \otimes A_{z}^{e}$
9. Linearization of a few steps of an explicit integrator

Matrices

Important Matrices

1. Sparse (e.g. discretization of a PDE operator)
2. Inverse of anything interesting $B=A^{-1}$
3. Jacobian of a nonlinear function $J y=\lim _{\epsilon \rightarrow 0} \frac{F(x+\epsilon y)-F(x)}{\epsilon}$
4. Fourier transform $\mathcal{F}, \mathcal{F}^{-1}$
5. Other fast transforms, e.g. Fast Multipole Method
6. Low rank correction $B=A+u v^{T}$
7. Schur complement $S=D-C A^{-1} B$
8. Tensor product $A=\sum_{e} A_{x}^{e} \otimes A_{y}^{e} \otimes A_{z}^{e}$
9. Linearization of a few steps of an explicit integrator

These matrices are dense. Never form them.

Matrices

Important Matrices

1. Sparse (e.g. discretization of a PDE operator)
2. Inverse of anything interesting $B=A^{-1}$
3. Jacobian of a nonlinear function $J y=\lim _{\epsilon \rightarrow 0} \frac{F(x+\epsilon y)-F(x)}{\epsilon}$
4. Fourier transform $\mathcal{F}, \mathcal{F}^{-1}$
5. Other fast transforms, e.g. Fast Multipole Method
6. Low rank correction $B=A+u v^{T}$
7. Schur complement $S=D-C A^{-1} B$
8. Tensor product $A=\sum_{e} A_{x}^{e} \otimes A_{y}^{e} \otimes A_{z}^{e}$
9. Linearization of a few steps of an explicit integrator

These are not very sparse. Don't form them.

Matrices

Important Matrices

1. Sparse (e.g. discretization of a PDE operator)
2. Inverse of anything interesting $B=A^{-1}$
3. Jacobian of a nonlinear function $J y=\lim _{\epsilon \rightarrow 0} \frac{F(x+\epsilon y)-F(x)}{\epsilon}$
4. Fourier transform $\mathcal{F}, \mathcal{F}^{-1}$
5. Other fast transforms, e.g. Fast Multipole Method
6. Low rank correction $B=A+u v^{T}$
7. Schur complement $S=D-C A^{-1} B$
8. Tensor product $A=\sum_{e} A_{x}^{e} \otimes A_{y}^{e} \otimes A_{z}^{e}$
9. Linearization of a few steps of an explicit integrator

None of these matrices "have entries"

PETSc

Iterative Solvers

Matrices

What can we do with a matrix that doesn't have entries?

Krylov solvers for $A x=b$
Krylov subspace: $\left\{b, A b, A^{2} b, A^{3} b, \ldots\right\}$
Convergence rate depends on the spectral properties of the matrix For any popular Krylov method \mathcal{K}, there is a matrix of size m, such that \mathcal{K} outperforms all other methods by a factor at least $\mathcal{O}(\sqrt{m})$ [Nachtigal et. al., 1992]

Typically...
The action $y \leftarrow A x$ can be computed in $\mathcal{O}(m)$
Aside from matrix multiply, the $n^{\text {th }}$ iteration requires at most $\mathcal{O}(m n)$

GMRES

Brute force minimization of residual in $\left\{b, A b, A^{2} b, \ldots\right\}$

1. Use Arnoldi to orthogonalize the nth subspace, producing

$$
A Q_{n}=Q_{n+1} H_{n}
$$

2. Minimize residual in this space by solving the overdetermined system

$$
H_{n} y_{n}=e_{1}^{(n+1)}
$$

using $Q R$-decomposition, updated cheaply at each iteration.

Properties
Converges in n steps for all right hand sides if there exists a polynomial of degree n such that $\left\|p_{n}(A)\right\|<t o l$ and $p_{n}(0)=1$.
Residual is monotonically decreasing, robust in practice Restarted variants are used to bound memory requirements

PETSc Solvers

Linear Solvers - Krylov Methods

Using PETSc linear algebra, just add:

```
KSPSetOperators(KSP ksp, Mat A, Mat M, MatStructure flag)
KSPSolve(KSP ksp, Vec b, Vec x)
```

Can access subobjects

```
KSPGetPC(KSP ksp, PC *pc)
```

Preconditioners must obey PETSc interface
Basically just the KSP interface
Can change solver dynamically from the command line, -ksp_type

Linear solvers in PETSc KSP

Linear solvers in PETSc KSP (Excerpt)

Richardson
Chebychev
Conjugate Gradient
BiConjugate Gradient
Generalized Minimum Residual Variants
Transpose-Free Quasi-Minimum Residual
Least Squares Method
Conjugate Residual

PETSc

Preconditioners

Preconditioning

Idea: improve the conditioning of the Krylov operator
Left preconditioning

$$
\begin{gathered}
\left(P^{-1} A\right) x=P^{-1} b \\
\left\{P^{-1} b,\left(P^{-1} A\right) P^{-1} b,\left(P^{-1} A\right)^{2} P^{-1} b, \ldots\right\}
\end{gathered}
$$

Right preconditioning

$$
\begin{gathered}
\left(A P^{-1}\right) P x=b \\
\left\{b,\left(P^{-1} A\right) b,\left(P^{-1} A\right)^{2} b, \ldots\right\}
\end{gathered}
$$

The product $P^{-1} A$ or $A P^{-1}$ is not formed.
A preconditioner \mathcal{P} is a method for constructing a matrix (just a linear function, not assembled!) $P^{-1}=\mathcal{P}\left(A, A_{p}\right)$ using a matrix A and extra information A_{p}, such that the spectrum of $P^{-1} A$ (or $A P^{-1}$) is well-behaved.

Preconditioning

Definition (Preconditioner)

A preconditioner \mathcal{P} is a method for constructing a matrix $P^{-1}=\mathcal{P}\left(A, A_{p}\right)$ using a matrix A and extra information A_{p}, such that the spectrum of $P^{-1} A$ (or $A P^{-1}$) is well-behaved.
P^{-1} is dense, P is often not available and is not needed
A is rarely used by \mathcal{P}, but $A_{p}=A$ is common
A_{p} is often a sparse matrix, the "preconditioning matrix" Matrix-based: Jacobi, Gauss-Seidel, SOR, ILU(k), LU Parallel: Block-Jacobi, Schwarz, Multigrid, FETI-DP, BDDC Indefinite: Schur-complement, Domain Decomposition, Multigrid

Questions to ask when you see a matrix

1. What do you want to do with it?

Multiply with a vector
Solve linear systems or eigen-problems
2. How is the conditioning/spectrum?
distinct/clustered eigen/singular values?
symmetric positive definite $\left(\sigma(A) \subset \mathbb{R}^{+}\right)$?
nonsymmetric definite $(\sigma(A) \subset\{z \in \mathbb{C}: \operatorname{Re}[z]>0\})$?
indefinite?
3. How dense is it?
block/banded diagonal?
sparse unstructured?
denser than we'd like?
4. Is there a better way to compute $A x$?
5. Is there a different matrix with similar spectrum, but nicer properties?
6. How can we precondition A ?

Questions to ask when you see a matrix

1. What do you want to do with it?

Multiply with a vector
Solve linear systems or eigen-problems
2. How is the conditioning/spectrum?
distinct/clustered eigen/singular values?
symmetric positive definite $\left(\sigma(A) \subset \mathbb{R}^{+}\right)$?
nonsymmetric definite $(\sigma(A) \subset\{z \in \mathbb{C}: \operatorname{Re}[z]>0\})$?
indefinite?
3. How dense is it?
block/banded diagonal?
sparse unstructured?
denser than we'd like?
4. Is there a better way to compute $A x$?
5. Is there a different matrix with similar spectrum, but nicer properties?
6. How can we precondition A ?

Relaxation

Split into lower, diagonal, upper parts: $A=L+D+U$
Jacobi
Cheapest preconditioner: $P^{-1}=D^{-1}$

Successive over-relaxation (SOR)

$$
\begin{gathered}
\left(L+\frac{1}{\omega} D\right) x_{n+1}=\left[\left(\frac{1}{\omega}-1\right) D-U\right] x_{n}+\omega b \\
P^{-1}=k \text { iterations starting with } x_{0}=0
\end{gathered}
$$

Implemented as a sweep
$\omega=1$ corresponds to Gauss-Seidel
Very effective at removing high-frequency components of residual

Factorization

Two phases

symbolic factorization: find where fill occurs, only uses sparsity pattern numeric factorization: compute factors

LU decomposition

Ultimate preconditioner
Expensive, for $m \times m$ sparse matrix with bandwidth b, traditionally requires $\mathcal{O}\left(m b^{2}\right)$ time and $\mathcal{O}(m b)$ space.

Bandwidth scales as $m^{\frac{d-1}{d}}$ in d-dimensions
Optimal in 2D: $\mathcal{O}(m \cdot \log m)$ space, $\mathcal{O}\left(m^{3 / 2}\right)$ time Optimal in 3D: $\mathcal{O}\left(m^{4 / 3}\right)$ space, $\mathcal{O}\left(m^{2}\right)$ time
Symbolic factorization is problematic in parallel

Incomplete LU

Allow a limited number of levels of fill: ILU(k)
Only allow fill for entries that exceed threshold: ILUT
Usually poor scaling in parallel
No guarantees

1-level Domain decomposition

Domain size L, subdomain size H, element size h
Overlapping/Schwarz
Solve Dirichlet problems on overlapping subdomains
No overlap: its $\in \mathcal{O}\left(\frac{L}{\sqrt{H h}}\right)$
Overlap $\delta:$ its $\in\left(\frac{L}{\sqrt{H \delta}}\right)$

Neumann-Neumann

Solve Neumann problems on non-overlapping subdomains its $\in \mathcal{O}\left(\frac{L}{H}\left(1+\log \frac{H}{h}\right)\right)$
Tricky null space issues (floating subdomains)
Need subdomain matrices, net globally assembled matrix.

Multilevel variants knock off the leading $\frac{L}{H}$
Both overlapping and nonoverlapping with this bound

Multigrid

Hierarchy: Interpolation and restriction operators

$$
\mathcal{I}^{\uparrow}: X_{\text {coarse }} \rightarrow X_{\text {fine }} \quad \mathcal{I}^{\downarrow}: X_{\text {fine }} \rightarrow X_{\text {coarse }}
$$

Geometric: define problem on multiple levels, use grid to compute hierarchy
Algebraic: define problem only on finest level, use matrix structure to build hierarchy

Galerkin approximation
Assemble this matrix: $A_{\text {coarse }}=\mathcal{I}^{\downarrow} A_{\text {fine }} \mathcal{I}^{\uparrow}$
Application of multigrid preconditioner (V-cycle)
Apply pre-smoother on fine level (any preconditioner)
Restrict residual to coarse level with \mathcal{I}^{\downarrow}
Solve on coarse level $A_{\text {coarse }} x=r$
Interpolate result back to fine level with \mathcal{I}^{\uparrow}
Apply post-smoother on fine level (any preconditioner)

Multigrid convergence properties

Textbook: $P^{-1} A$ is spectrally equivalent to identity Constant number of iterations to converge up to discretization error Most theory applies to SPD systems
variable coefficients (e.g. discontinuous): low energy interpolants mesh- and/or physics-induced anisotropy: semi-coarsening/line smoothers
complex geometry: difficult to have meaningful coarse levels
Deeper algorithmic difficulties
nonsymmetric (e.g. advection, shallow water, Euler) indefinite (e.g. incompressible flow, Helmholtz)
Performance considerations
Aggressive coarsening is critical in parallel Most theory uses SOR smoothers, ILU often more robust Coarsest level usually solved semi-redundantly with direct solver
Multilevel Schwarz is essentially the same with different language assume strong smoothers, emphasize aggressive coarsening

Splitting for Multiphysics

$$
\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
f \\
g
\end{array}\right]
$$

Relaxation: -pc_fieldsplit_type

```
[additive,multiplicative,symmetric_multiplicative]
```

$$
\left[\begin{array}{ll}
A & \\
& D
\end{array}\right]^{-1} \quad\left[\begin{array}{ll}
A & \\
C & D
\end{array}\right]^{-1} \quad\left[\begin{array}{ll}
A & \\
& \mathbf{1}
\end{array}\right]^{-1}\left(\mathbf{1}-\left[\begin{array}{ll}
A & B \\
& \mathbf{1}
\end{array}\right]\left[\begin{array}{ll}
A & \\
C & D
\end{array}\right]^{-1}\right)
$$

Gauss-Seidel inspired, works when fields are loosely coupled Factorization: -pc_fieldsplit_type schur

$$
\left[\begin{array}{ll}
A & B \\
& S
\end{array}\right]^{-1}\left[\begin{array}{cc}
\mathbf{1} & \\
C A^{-1} & \mathbf{1}
\end{array}\right]^{-1}, \quad S=D-C A^{-1} B
$$

robust (exact factorization), can often drop lower block how to precondition S which is usually dense?
interpret as differential operators, use approximate commutators

PETSc

Debugging and Profiling

PETSc Debugging

By default, a debug build is provided
Launch the debugger

```
-start_in_debugger [gdb,dbx, noxterm]
-on_error_attach_debugger [gdb,dbx,noxterm]
```

Attach the debugger only to some parallel processes
-debugger_nodes 0,1

Set the display (often necessary on a cluster)
-display :0

Debugging Tips

Put a breakpoint in PetscError () to catch errors as they occur
PETSc tracks memory overwrites at both ends of arrays
The CHKMEMQ macro causes a check of all allocated memory Track memory overwrites by bracketing them with CHKMEMQ

PETSc checks for leaked memory
Use Petscmalloc() and PetscFree() for all allocation Print unfreed memory on PetscFinalize() with -malloc_dump

Simply the best tool today is Valgrind
It checks memory access, cache performance, memory usage, etc. http://www.valgrind.org
Pass -malloc 0 to PETSc when running under Valgrind Might need --trace-children=yes when running under MPI --track-origins=yes handy for uninitialized memory

PETSc Profiling

Profiling

Use -log_summary for a performance profile
Event timing
Event flops
Memory usage
MPI messages
Call PetscLogStagePush() and PetscLogStagePop() User can add new stages
Call PetscLogEventBegin() and PetscLogEventEnd() User can add new events

Call PetscLogFlops () to include your flops

PETSc Profiling

Reading -log_summary

	Max	Max/Min	Avg	Total
Time (sec):	$1.548 \mathrm{e}+02$	1.00122	$1.547 \mathrm{e}+02$	
Objects:	$1.028 \mathrm{e}+03$	1.00000	$1.028 \mathrm{e}+03$	
Flops:	$1.519 \mathrm{e}+10$	1.01953	$1.505 \mathrm{e}+10$	$1.204 \mathrm{e}+11$
Flops/sec:	$9.814 \mathrm{e}+07$	1.01829	$9.727 \mathrm{e}+07$	$7.782 \mathrm{e}+08$
MPI Messages:	$8.854 \mathrm{e}+03$	1.00556	$8.819 \mathrm{e}+03$	$7.055 \mathrm{e}+04$
MPI Message Lengths:	$1.936 \mathrm{e}+08$	1.00950	$2.185 \mathrm{e}+04$	$1.541 \mathrm{e}+09$
MPI Reductions:	$2.799 \mathrm{e}+03$	1.00000		

Also a summary per stage
Memory usage per stage (based on when it was allocated) Time, messages, reductions, balance, flops per event per stage Always send -log_summary when asking performance questions on mailing list

PETSc Profiling

Event	Count Max Ratio	Time (sec) Max Ratio		Flops		Mess	Avg len	Reduct	--- Global					
Event	sol													
VecDot	431.0	$4.8879 \mathrm{e}-02$	8.3	$1.77 \mathrm{e}+06$	1.0	$0.0 \mathrm{e}+00$	$0.0 \mathrm{e}+00$	$4.3 \mathrm{e}+01$	0	0	0	0	0	0
VecMDot	17471.0	$1.3021 e+00$	4.6	$8.16 e+07$	1.0	$0.0 \mathrm{e}+00$	$0.0 \mathrm{e}+00$	1.7e+03	0	1	0	0	4	1
VecNorm	39721.0	$1.5460 \mathrm{e}+00$	2.5	$8.48 \mathrm{e}+07$	1.0	$0.0 \mathrm{e}+00$	$0.0 \mathrm{e}+00$	$4.0 \mathrm{e}+03$	0	1	0	0	1	1
VecScale	32611.0	$1.6703 \mathrm{e}-01$	1.0	$3.38 e+07$	1.0	$0.0 \mathrm{e}+00$	$0.0 \mathrm{e}+00$	$0.0 \mathrm{e}+00$	0	0	0	0	0	0
VecScatterBegin	45031.0	$4.0440 \mathrm{e}-01$	1.0	$0.00 \mathrm{e}+00$	0.0	$6.1 e+07$	$2.0 \mathrm{e}+03$	$0.0 \mathrm{e}+00$	0	0	50	26	0	0
VecScatterEnd	45031.0	$2.8207 \mathrm{e}+00$	6.4	$0.00 \mathrm{e}+00$	0.0	$0.0 \mathrm{e}+00$	$0.0 \mathrm{e}+00$	$0.0 \mathrm{e}+00$	0	0	0	0	0	0
MatMult	30011.0	$3.2634 e+01$	1.1	$3.68 e+09$	1.1	$4.9 \mathrm{e}+07$	$2.3 \mathrm{e}+03$	$0.0 \mathrm{e}+00$	11	22	40	24	0	22
MatMultAdd	6041.0	$6.0195 \mathrm{e}-01$	1.0	$5.66 e+07$	1.0	$3.7 e+06$	1. $3 \mathrm{e}+02$	$0.0 \mathrm{e}+00$	0	0	3	0	0	0
MatMultTranspose	6761.0	$1.3220 \mathrm{e}+00$	1.6	$6.50 \mathrm{e}+07$	1.0	$4.2 e+06$	1. $4 \mathrm{e}+02$	$0.0 \mathrm{e}+00$	0	0	3	0	0	1
MatSolve	30201.0	$2.5957 \mathrm{e}+01$	1.0	$3.25 \mathrm{e}+09$	1.0	$0.0 \mathrm{e}+00$	$0.0 \mathrm{e}+00$	$0.0 \mathrm{e}+00$	9	21	0	0	0	18
MatCholFctrSym	31.0	$2.8324 \mathrm{e}-04$	1.0	$0.00 \mathrm{e}+00$	0.0	$0.0 \mathrm{e}+00$	$0.0 \mathrm{e}+00$	$0.0 \mathrm{e}+00$	0	0	0	0	0	0
MatCholFctrNum	691.0	$5.7241 \mathrm{e}+00$	1.0	$6.75 e+08$	1.0	$0.0 \mathrm{e}+00$	$0.0 \mathrm{e}+00$	$0.0 \mathrm{e}+00$	2	4	0	0	0	4
MatAssemblyBegin	1191.0	$2.8250 \mathrm{e}+00$	1.5	$0.00 \mathrm{e}+00$	0.0	$2.1 e+06$	$5.4 \mathrm{e}+04$	$3.1 \mathrm{e}+02$	1	0	2	24	2	2
MatAssemblyEnd	1191.0	$1.9689 \mathrm{e}+00$	1.4	$0.00 \mathrm{e}+00$	0.0	$2.8 e+05$	1. $3 \mathrm{e}+03$	$6.8 e+01$	1	0	0	0	1	1
SNESSolve	41.0	$1.4302 \mathrm{e}+02$	1.0	$8.11 e+09$	1.0	$6.3 e+07$	$3.8 \mathrm{e}+03$	$6.3 e+03$	51	50	52	50	50	991
SNESLineSearch	431.0	$1.5116 \mathrm{e}+01$	1.0	$1.05 \mathrm{e}+08$	1.1	$2.4 e+06$	$3.6 e+03$	$1.8 e+02$	5	1	2	2	1	10
SNESFunctionEval	551.0	$1.4930 \mathrm{e}+01$	1.0	$0.00 \mathrm{e}+00$	0.0	1.8e+06	$3.3 \mathrm{e}+03$	$8.0 \mathrm{e}+00$	5	0	1	1	0	10
SNESJacobianEval	431.0	$3.7077 e+01$	1.0	$7.77 e+06$	1.0	$4.3 \mathrm{e}+06$	$2.6 \mathrm{e}+04$	$3.0 \mathrm{e}+02$	13	0	4	24	2	26
KSPGMRESOrthog	17471.0	$1.5737 \mathrm{e}+00$	2.9	$1.63 \mathrm{e}+08$	1.0	$0.0 \mathrm{e}+00$	$0.0 \mathrm{e}+00$	$1.7 e+03$	1	1	0	0	14	1
KSPSetup	2241.0	$2.1040 \mathrm{e}-02$	1.0	$0.00 \mathrm{e}+00$	0.0	$0.0 \mathrm{e}+00$	$0.0 \mathrm{e}+00$	$3.0 \mathrm{e}+01$	0	0	0	0	0	0
KSPSolve	431.0	$8.9988 \mathrm{e}+01$	1.0	$7.99 \mathrm{e}+09$	1.0	$5.6 e+07$	$2.0 \mathrm{e}+03$	$5.8 e+03$	32	49	46	24	46	62
PCSetUp	1121.0	$1.7354 \mathrm{e}+01$	1.0	$6.75 e+08$	1.0	$0.0 \mathrm{e}+00$	$0.0 \mathrm{e}+00$	$8.7 e+01$	6	4	0	0	1	12
PCSetUpOnBlocks	12081.0	$5.8182 \mathrm{e}+00$	1.0	$6.75 e+08$	1.0	$0.0 \mathrm{e}+00$	$0.0 \mathrm{e}+00$	$8.7 e+01$	2	4	0	0	1	4
PCApply	2761.0	$7.1497 e+01$	1.0	$7.14 e+09$	1.0	$5.2 e+07$	1. $8 \mathrm{e}+03$	$5.1 e+03$	25	44	42	20	41	

PETSc Profiling

Communication Costs

Reductions: usually part of Krylov method, latency limited

```
VecDot
```

VecMDot
VecNorm
MatAssemblyBegin
Change algorithm (e.g. IBCGS)
Point-to-point (nearest neighbor), latency or bandwidth
VecScatter
MatMult
PCApply
MatAssembly
SNESFunctionEval
SNESJacobianEval

Compute subdomain boundary fluxes redundantly Ghost exchange for all fields at once
Better partition

Conclusions

PETSc can help You

solve algebraic and DAE problems in your application area rapidly develop efficient parallel code, can start from examples develop new solution methods and data structures debug and analyze performance advice on software design, solution algorithms, and performance

```
petsc-{users,dev,maint}@mcs.anl.gov
```


You can help PETSc

report bugs and inconsistencies, or if you think there is a better way tell us if the documentation is inconsistent or unclear consider developing new algebraic methods as plugins, contribute if your idea works

