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Motivation

Given any periodic signal p(x):

−T/2 T/2

2

−1
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Motivation II

• Decomposition into most basic types of periodic
signals with same period: Sine and Cosine

• Candidates:

sin(
2πx

T
), sin(2

2πx

T
), . . .

cos(
2πx

T
), cos(2

2πx

T
), . . .

• Thus p(x) could be rewritten as:

p(x) =
∞

∑

k=0

ak cos(k
2πx

T
) + bk sin(k

2πx

T
)
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Motivation III

An analogon:
Given a crowd of people from UK, France, Greece and
from Germany. How to separate them?

(One possible) answer:
• Ask them to move on the left in French, forward in

Greek, backwards in English and to move on the
right in German.

• Use of spoken language as identifier.
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Motivation IV

How to extract potions of sine and cosine?
⇒ A unique "identifier" for each sine and cosine needs
to be found

Solution: Use scalar product, k ∈ N:

∫ T/2

−T/2
cos(k

2πx

T
) cos(n

2πx

T
)dx =











T, k = n = 0

T/2, k = n 6= 0

0, k 6= n

Analogous results for sin(k 2πx
T ) · sin(n2πx

T ) and

sin(k 2πx
T ) · cos(n2πx

T )!
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Fourier series

Sticking all together leads to

p(x) =
a0

2
+

∞
∑

k=1

ak cos(k
2πx

T
) + bk sin(k

2πx

T
)

with

ak =
2

T

∫ T/2

−T/2
p(x) cos(k

2πx

T
)dx, k ≥ 0

bk =
2

T

∫ T/2

−T/2
p(x) sin(k

2πx

T
)dx, k ≥ 1
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Fourier series II

Simplification using eix = cos(x) + i sin(x):

p(x) =

∞
∑

k=−∞
cke

i 2πx

T

with

ck =
1

T

∫ T/2

−T/2
p(x)ei 2πx

T dx, k ≥ 0
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From series to transform

What happens if T → ∞?

Fourier Transform – p.9/22



From series to transform

What happens if T → ∞?

• Increment 2π
T between frequencies tends to zero,

therefore all frequencies ω are possible now.
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From series to transform

What happens if T → ∞?

• Increment 2π
T between frequencies tends to zero,

therefore all frequencies ω are possible now.
• Coefficients not only at discrete values, but defined

over the whole real axis.
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From series to transform

What happens if T → ∞?

• Increment 2π
T between frequencies tends to zero,

therefore all frequencies ω are possible now.
• Coefficients not only at discrete values, but defined

over the whole real axis.
• Fourier transform becomes an operator (function

in - function out)
• Periodicy of function not necessary anymore,

therefore arbitrary functions can be transformed!
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Fourier transform

Fourier transform in one dimension:

F{f}(ω) =
1√
2π

∫ ∞

−∞
f(x)e−iωxdx

Can easily be extended to several dimensions:

F{f}(ω) = (2π)−n/2

∫

Rn

f(x)e−iωxdx

Often capital letters are used for the Fourier transform

of a function. (f(x) ⇐⇒ F (ω))
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Basic Properties

• Duality: F{F{f}}(x) = f(−x)
or more often used:

f(x) =
1√
2π

∫ ∞

−∞
F (ω)eiωxdω

• Linearity: a · f(x) + b · g(x) ⇐⇒ a · F (ω) + b · G(ω)

• Scaling: f(a · x) ⇐⇒ 1
|a|F (x

a )

• Shift in f : f(x − a) ⇐⇒ e−iaxF (ω)

• Shift in F : eiaxf(x) ⇐⇒ F (ω − a)

Fourier Transform – p.11/22



Further Properties

• Differentiation of f : dnf(x)
dxn ⇐⇒ (iω)nF (ω)

• Differentiation of F : xnf(x) ⇐⇒ in dnG(ω)
dω

• Convolution of f, g: f(x) ∗ g(x) ⇐⇒ F (ω)G(ω)

• Convolution of F,G: f(x)g(x) ⇐⇒ F (ω)∗G(ω)√
2π

• Parseval theorem:
∫ ∞

−∞
f(x)g(x)dx =

∫ ∞

−∞
F (ω)G(ω)dω
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Some Fourier pairs

Some of the most important transform-pairs:

rect(x) ⇐⇒ 2√
2π

sin(ω/2)

ω

δ(x) ⇐⇒ 1√
2π

e−αt ⇐⇒ 1√
2α

· e−ω
2

4α

∞
∑

n=−∞
δ(t − nT ) ⇐⇒

√
2π
T

∞
∑

k=−∞
δ
(

ω − k 2π
T

)
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Making use of Fourier transform

• Differential equations transform to algebraic
equations that are often much easier to solve

• Convolution simplifies to multiplication, that is why
Fourier transform is very powerful in system theory

• Both f(x) and F (ω) have an "intuitive" meaning
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Discrete Fourier Transform (DFT)

The power of Fourier transform works for digital signal
processing (computers, embedded chips) as well, but
of course a discrete variant is used (notation applied
to conventions):

X(k) =

N−1
∑

n=0

xne−
2πi

N
kn k = 0, . . . , N − 1

for a signal of length N .
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Dirac-Delta-Function (discrete)

The Delta-distribution in terms of digital systems is
simply defined as

x(n) =

{

1, n = 0,

0, n 6= 0.

(Input-)signals are decomposed into such delta-

functions, while the output is a superposition of the out-

put for each of the input-delta-functions.
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Application I

Filtering audio

w

|F(w)|

w

|F(w)|

w

|F(w)|

.
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Application II

Partial Differential Equations:

Find bounded solutions u(x, t), x ∈ R
n, t ∈ R

∂2

∂t2
u(x, t) + ∆xu(x, t) = 0

u(x, 0) = f(x)

Solution: Using Fourier transform with respect to x.

u(x, t) = π−n+1

2 Γ

(

n + 1

2

)
∫

Rn

f(y)
t

(t2 + |x − y|2)n+1

2

dy.
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Functional Analysis View

• Integral operations well defined for f ∈ L1(R
n)

(Fubini).
• But where is Fourier-transform continuous?
• Is it one-to-one?

Starting with test-functions: They are not enough.
Hence: Rapidly decreasing functions Sn

f ∈ C∞(Rn) : sup
|x|<N

sup
x∈Rn

(1 + |x|2)N |∂
αf(x)

∂xα
| < ∞

for N = 0, 1, 2, . . . and for multi-indices α.
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Rapidly decreasing functions

• Form a vector space
• Fourier transform is a continuous, linear,

one-to-one mapping of Sn onto Sn of period 4, with
a continuous inverse.

• Test-functions are dense in Sn

• Sn is dense in both L1(R
n) and L2(R

n)

• Plancharel theorem: There is a linear isometry of
L2(R

n) onto L2(R
n) that is uniquely defined via the

Fourier transform in Sn.
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Extensions

• Fast Fourier Transform (FFT): effort is only
O(n log(n)) instead of O(n2)

• Laplace transform:

F (s) =

∫ ∞

0−
f(x)e−sxdx

• z-transform: Discrete counterpart of Laplace
transform

X(z) = Z{x[n]} =
∞

∑

n=−∞
x[n]z−n
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The End

Thank you for your attention!
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