
PETSc
Portable, Extensible Toolkit for Scientific Computation

Karl Rupp
rupp@mcs.anl.gov

Mathematics and Computer Science Division
Argonne National Laboratory

Tutorial at the HPC Symposium 2013

April 10th, 2013

2

Before we start...Before we start...

Ask Questions

Tell me if you do not understand

Ask for further details

3

Table of ContentsTable of Contents

About PETSc

First Steps

Application Integration

Profiling

PETSc and GPUs

4

PETScPETSc

About PETSc

5

PETSc OriginsPETSc Origins

PETSc was developed as a Platform for
Experimentation

We want to experiment with different

Models

Discretizations

Solvers

Algorithms

These boundaries are often blurred...

6

TimelineTimeline

1991 1995 2000 2005 2010

PETSc-1
MPI-1 MPI-2

PETSc-2 PETSc-3
Barry

Bill
Lois

Satish
Dinesh

Hong
Kris
Matt

Victor
Dmitry

Lisandro
Jed
Shri

Peter
Karl

7

PETScPETSc

Portable Extensible Toolkit for Scientific Computing

Architecture
tightly coupled (e.g. XT5, BG/P, Earth Simulator)

loosely coupled such as network of workstations

GPU clusters (many vector and sparse matrix kernels)

Software Environment
Operating systems (Linux, Mac, Windows, BSD, proprietary Unix)

Any compiler

Usable from C, C++, Fortran 77/90, Python, and MATLAB

Real/complex, single/double/quad precision, 32/64-bit int

System Size
500B unknowns, 75% weak scalability on Jaguar (225k cores)
and Jugene (295k cores)

Same code runs performantly on a laptop

Free to everyone (BSD-style license), open development

8

PETScPETSc

Portable Extensible Toolkit for Scientific Computing

Philosophy: Everything has a plugin architecture

Vectors, Matrices, Coloring/ordering/partitioning algorithms

Preconditioners, Krylov accelerators

Nonlinear solvers, Time integrators

Spatial discretizations/topology∗

Example

Vendor supplies matrix format and associated preconditioner,
distributes compiled shared library.

Application user loads plugin at runtime, no source code in sight.

9

PETScPETSc

Portable Extensible Toolkit for Scientific Computing

Toolset

algorithms

(parallel) debugging aids

low-overhead profiling

Composability

try new algorithms by choosing from product space

composing existing algorithms (multilevel, domain decomposition,
splitting)

Experimentation

Impossible to pick the solver a priori

PETSc’s response: expose an algebra of composition

keep solvers decoupled from physics and discretization

10

PETScPETSc

Portable Extensible Toolkit for Scientific Computing
Computational Scientists

PyLith (CIG), Underworld (Monash), Magma Dynamics (LDEO,
Columbia), PFLOTRAN (DOE), SHARP/UNIC (DOE)

Algorithm Developers (iterative methods and preconditioning)

Package Developers
SLEPc, TAO, Deal.II, Libmesh, FEniCS, PETSc-FEM, MagPar,
OOFEM, FreeCFD, OpenFVM

Funding
Department of Energy

SciDAC, ASCR ISICLES, MICS Program, INL Reactor Program
National Science Foundation

CIG, CISE, Multidisciplinary Challenge Program

Documentation and Support
Hundreds of tutorial-style examples

Hyperlinked manual, examples, and manual pages for all routines

Support from petsc-maint@mcs.anl.gov

petsc-maint@mcs.anl.gov

11

The Role of PETScThe Role of PETSc

Developing parallel, nontrivial PDE solvers that de-
liver high performance is still difficult and requires
months (or even years) of concentrated effort.

PETSc is a toolkit that can ease these difficulties and
reduce the development time, but it is not a black-box
PDE solver, nor a silver bullet.

— Barry Smith

12

The Role of PETScThe Role of PETSc

You want to think about how you decompose your
data structures, how you think about them globally.
[...]

If you were building a house, you’d start with a set of
blueprints that give you a picture of what the whole
house looks like. You wouldn’t start with a bunch of
tiles and say. “Well I’ll put this tile down on the ground,
and then I’ll find a tile to go next to it.”

But all too many people try to build their parallel pro-
grams by creating the smallest possible tiles and then
trying to have the structure of their code emerge from
the chaos of all these little pieces. You have to have
an organizing principle if you’re going to survive mak-
ing your code parallel.

— Bill Gropp
— http://www.rce-cast.com/Podcast/rce-28-mpich2.html

13

PETScPETSc

First Steps

14

PETScPETSc

Obtaining PETSc

http://mcs.anl.gov/petsc, download tarball

Linux Package Managers

Git: https://bitbucket.org/petsc/petsc

Mercurial: https://bitbucket.org/petsc/petsc-hg

Installing PETSc

$> export PETSC_DIR=$PWD PETSC_ARCH=mpich-gcc-dbg

$> ./configure --with-shared-libraries
--with-blas-lapack-dir=/usr
--download-{mpich,ml,hypre}

$> make all test

15

PETSc External PackagesPETSc External Packages

Most packages can be automatically
Downloaded

Configured and Built (in $PETSC_DIR/externalpackages)

Installed with PETSc

Currently works for
petsc4py

PETSc documentation utilities (Sowing, lgrind, c2html)

BLAS, LAPACK, BLACS, ScaLAPACK, PLAPACK

MPICH, MPE, OpenMPI

ParMetis, Chaco, Jostle, Party, Scotch, Zoltan

MUMPS, Spooles, SuperLU, SuperLU Dist, UMFPack, pARMS

PaStiX, BLOPEX, FFTW, SPRNG

Prometheus, HYPRE, ML, SPAI

Sundials

Triangle, TetGen, FIAT, FFC, Generator

HDF5, Boost

16

PETSc PyramidPETSc Pyramid

PETSc Structure

17

Flow Control for a PETSc ApplicationFlow Control for a PETSc Application

Timestepping Solvers (TS)

Preconditioners (PC)

Nonlinear Solvers (SNES)

Linear Solvers (KSP)

Function

Evaluation
Postprocessing

Jacobian

Evaluation

Application

Initialization

Main Routine

PETSc

18

PETSc ObjectsPETSc Objects

Sample Code

Mat A;
PetscInt m,n,M,N;
MatCreate(comm,&A);
MatSetSizes(A,m,n,M,N); /* or PETSC_DECIDE */
MatSetOptionsPrefix(A,"foo_");
MatSetFromOptions(A);
/* Use A */
MatView(A,PETSC_VIEWER_DRAW_WORLD);
MatDestroy(A);

Remarks
Mat is an opaque object (pointer to incomplete type)

Assignment, comparison, etc, are cheap
What’s up with this “Options” stuff?

We will discuss this later...

19

Basic PetscObject UsageBasic PetscObject Usage

Every object in PETSc supports a basic interface

Function Operation
Create() create the object

Get/SetName() name the object
Get/SetType() set the implementation type

Get/SetOptionsPrefix() set the prefix for all options
SetFromOptions() customize object from command line

SetUp() perform other initialization
View() view the object

Destroy() cleanup object allocation

Also, all objects support the -help option.

20

PETSc OptionsPETSc Options

Ways to set options

Command line

Filename in the third argument of PetscInitialize()

˜/.petscrc

$PWD/.petscrc

$PWD/petscrc

PetscOptionsInsertFile()

PetscOptionsInsertString()

PETSC_OPTIONS environment variable

command line option -options_file [file]

21

PETSc OptionsPETSc Options

Example of Command Line Control

$> ./ex5 -da_grid_x 10 -da_grid_y 10 -par 6.7

-snes_monitor -{ksp,snes}_converged_reason

-snes_view

$> ./ex5 -da_grid_x 10 -da_grid_y 10 -par 6.7

-snes_monitor -{ksp,snes}_converged_reason

-snes_view -mat_view_draw -draw_pause 0.5

$> ./ex5 -da_grid_x 10 -da_grid_y 10 -par 6.7

-snes_monitor -{ksp,snes}_converged_reason

-snes_view -mat_view_draw -draw_pause 0.5

-pc_type lu -pc_factor_mat_ordering_type natural

Use -help to find other ordering types

22

PETScPETSc

Application Integration

23

Application IntegrationApplication Integration

Be willing to experiment with algorithms

No optimality without interplay between physics and algorithmics

Adopt flexible, extensible programming

Algorithms and data structures not hardwired

Be willing to play with the real code

Toy models have limited usefulness

But make test cases that run quickly

If possible, profile before integration

Automatic in PETSc

24

Incorporating PETSc into Existing CodesIncorporating PETSc into Existing Codes

PETSc does not seize main(), does not control output

Propogates errors from underlying packages, flexible

Nothing special about MPI_COMM_WORLD

Can wrap existing data structures/algorithms
MatShell, PCShell, full implementations

VecCreateMPIWithArray()

MatCreateSeqAIJWithArrays()

Use an existing semi-implicit solver as a preconditioner

Usually worthwhile to use native PETSc data structures
unless you have a good reason not to

Uniform interfaces across languages
C, C++, Fortran 77/90, Python, MATLAB

Do not have to use high level interfaces (e.g. SNES, TS, DM)
but PETSc can offer more if you do, like MFFD and SNES Test

25

Integration StagesIntegration Stages

Version Control
It is impossible to overemphasize

Initialization
Linking to PETSc

Profiling
Profile before changing

Also incorporate command line processing

Linear Algebra
First PETSc data structures

Solvers
Very easy after linear algebra is integrated

26

InitializationInitialization

Call PetscInitialize()

Setup static data and services

Setup MPI if it is not already

Can set PETSC_COMM_WORLD to use your communicator
(can always use subcommunicators for each object)

Call PetscFinalize()

Calculates logging summary

Can check for leaks/unused options

Shutdown and release resources

Can only initialize PETSc once

27

PETSc Application IntegrationPETSc Application Integration

Sparse Matrices

The important data type when solving PDEs
Two main phases:

Filling with entries (assembly)
Application of its action (e.g. SpMV)

28

Matrix Memory PreallocationMatrix Memory Preallocation

PETSc sparse matrices are dynamic data structures
can add additional nonzeros freely

Dynamically adding many nonzeros
requires additional memory allocations

requires copies

can kill performance

Memory preallocation provides
the freedom of dynamic data structures

good performance

Easiest solution is to replicate the assembly code
Remove computation, but preserve the indexing code

Store set of columns for each row

Call preallocation routines for all datatypes
MatSeqAIJSetPreallocation()

MatMPIBAIJSetPreallocation()

Only the relevant data will be used

29

PETSc Application IntegrationPETSc Application Integration

Sequential Sparse Matrices
MatSeqAIJSetPreallocation(Mat A, int nz, int nnz[])

nz: expected number of nonzeros in any row

nnz(i): expected number of nonzeros in row i

30

PETSc Application IntegrationPETSc Application Integration

Parallel Sparse Matrix

Each process locally owns a submatrix of contiguous global rows

Each submatrix consists of diagonal and off-diagonal parts

proc 5

proc 4

proc 3

proc 2

proc 1

proc 0

diagonal blocks

offdiagonal blocks

MatGetOwnershipRange(Mat A,int *start,int *end)

start: first locally owned row of global matrix
end-1: last locally owned row of global matrix

31

PETSc Application IntegrationPETSc Application Integration

Parallel Sparse Matrix

MatMPIAIJSetPreallocation(Mat A, int dnz, int dnnz[],
int onz, int onnz[]

dnz: expected number of nonzeros in any row in the diagonal block

dnnz(i): expected number of nonzeros in row i in the diagonal block

onz: expected number of nonzeros in any row in the offdiagonal portion

onnz(i): expected number of nonzeros in row i in the offdiagonal portion

32

PETSc Application IntegrationPETSc Application Integration

Verifying Preallocation

Use runtime options
-mat_new_nonzero_location_err
-mat_new_nonzero_allocation_err

Use runtime option
-info

Output:

[proc #] Mat r i x s ize : %d X %d ; storage space : %d unneeded , %d used
[proc #] Number o f mal locs dur ing MatSetValues () i s %d

33

Block and Symmetric FormatsBlock and Symmetric Formats

BAIJ

Like AIJ, but uses static block size

Preallocation is like AIJ, but just one index per block

SBAIJ

Only stores upper triangular part

Preallocation needs number of nonzeros in upper triangular
parts of on- and off-diagonal blocks

MatSetValuesBlocked()

Better performance with blocked formats

Also works with scalar formats, if MatSetBlockSize() was called

Variants MatSetValuesBlockedLocal(),
MatSetValuesBlockedStencil()

Change matrix format at runtime, don’t need to touch assembly code

34

MatricesMatrices

Definition (Matrix)
A matrix is a linear transformation between finite dimensional vector
spaces.

Definition (Forming a matrix)
Forming or assembling a matrix means defining it’s action in terms of
entries (usually stored in a sparse format).

35

MatricesMatrices

Important Matrices

1. Sparse (e.g. discretization of a PDE operator)

2. Inverse of anything interesting B = A−1

3. Jacobian of a nonlinear function Jy = limε→0
F(x+εy)−F(x)

ε

4. Fourier transform F ,F−1

5. Other fast transforms, e.g. Fast Multipole Method

6. Low rank correction B = A + uvT

7. Schur complement S = D− CA−1B

8. Tensor product A =
∑

e Ae
x ⊗ Ae

y ⊗ Ae
z

9. Linearization of a few steps of an explicit integrator

35

MatricesMatrices

Important Matrices

1. Sparse (e.g. discretization of a PDE operator)

2. Inverse of anything interesting B = A−1

3. Jacobian of a nonlinear function Jy = limε→0
F(x+εy)−F(x)

ε

4. Fourier transform F ,F−1

5. Other fast transforms, e.g. Fast Multipole Method

6. Low rank correction B = A + uvT

7. Schur complement S = D− CA−1B

8. Tensor product A =
∑

e Ae
x ⊗ Ae

y ⊗ Ae
z

9. Linearization of a few steps of an explicit integrator

These matrices are dense. Never form them.

35

MatricesMatrices

Important Matrices

1. Sparse (e.g. discretization of a PDE operator)

2. Inverse of anything interesting B = A−1

3. Jacobian of a nonlinear function Jy = limε→0
F(x+εy)−F(x)

ε

4. Fourier transform F ,F−1

5. Other fast transforms, e.g. Fast Multipole Method

6. Low rank correction B = A + uvT

7. Schur complement S = D− CA−1B

8. Tensor product A =
∑

e Ae
x ⊗ Ae

y ⊗ Ae
z

9. Linearization of a few steps of an explicit integrator

These are not very sparse. Don’t form them.

35

MatricesMatrices

Important Matrices

1. Sparse (e.g. discretization of a PDE operator)

2. Inverse of anything interesting B = A−1

3. Jacobian of a nonlinear function Jy = limε→0
F(x+εy)−F(x)

ε

4. Fourier transform F ,F−1

5. Other fast transforms, e.g. Fast Multipole Method

6. Low rank correction B = A + uvT

7. Schur complement S = D− CA−1B

8. Tensor product A =
∑

e Ae
x ⊗ Ae

y ⊗ Ae
z

9. Linearization of a few steps of an explicit integrator

None of these matrices “have entries”

36

MatricesMatrices

What can we do with a matrix that doesn’t have entries?

Krylov solvers for Ax = b

Krylov subspace: {b,Ab,A2b,A3b, . . . }
Convergence rate depends on the spectral properties of the matrix

For any popular Krylov method K, there is a matrix of size m, such
that K outperforms all other methods by a factor at least
O(
√

m) [Nachtigal et. al., 1992]

Typically...

The action y← Ax can be computed in O(m)

Aside from matrix multiply, the nth iteration requires at most O(mn)

37

GMRESGMRES

Brute force minimization of residual in {b,Ab,A2b, . . . }

1. Use Arnoldi to orthogonalize the nth subspace, producing

AQn = Qn+1Hn

2. Minimize residual in this space by solving the overdetermined system

Hnyn = e(n+1)
1

using QR-decomposition, updated cheaply at each iteration.

Properties

Converges in n steps for all right hand sides if there exists a
polynomial of degree n such that ‖pn(A)‖ < tol and pn(0) = 1.

Residual is monotonically decreasing, robust in practice

Restarted variants are used to bound memory requirements

38

PETSc SolversPETSc Solvers

Linear Solvers - Krylov Methods

Using PETSc linear algebra, just add:

KSPSetOperators(KSP ksp, Mat A, Mat M, MatStructure flag)
KSPSolve(KSP ksp, Vec b, Vec x)

Can access subobjects

KSPGetPC(KSP ksp, PC *pc)

Preconditioners must obey PETSc interface
Basically just the KSP interface

Can change solver dynamically from the command line, -ksp_type

39

Newton iteration: workhorse of SNESNewton iteration: workhorse of SNES

Standard form of a nonlinear system

F(u) = 0

Iteration

Solve: J(u)w = −F(u)

Update: u+ ← u + w

Quadratically convergent near a root: |un+1 − u∗| ∈ O
(
|un − u∗|2

)
Picard is the same operation with a different J(u)

40

PETSc SolversPETSc Solvers

Nonlinear Solvers - Newton and Picard Methods

Using PETSc linear algebra, just add:

SNESSetFunction(SNES snes, Vec r, residualFunc, void *ctx)
SNESSetJacobian(SNES snes, Mat A, Mat M, jacFunc, void *ctx)
SNESSolve(SNES snes, Vec b, Vec x)

Can access subobjects

SNESGetKSP(SNES snes, KSP *ksp)

Can customize subobjects from the cmd line
Set the subdomain preconditioner to ILU with -sub_pc_type ilu

41

PETScPETSc

Profiling

42

PETSc ProfilingPETSc Profiling

Profiling

Use -log_summary for a performance profile
Event timing
Event flops
Memory usage
MPI messages

Call PetscLogStagePush() and PetscLogStagePop()

User can add new stages
Call PetscLogEventBegin() and PetscLogEventEnd()

User can add new events

Call PetscLogFlops() to include your flops

43

PETSc ProfilingPETSc Profiling

Reading -log summary
Max Max/Min Avg Total

Time (sec): 1.548e+02 1.00122 1.547e+02
Objects: 1.028e+03 1.00000 1.028e+03
Flops: 1.519e+10 1.01953 1.505e+10 1.204e+11
Flops/sec: 9.814e+07 1.01829 9.727e+07 7.782e+08
MPI Messages: 8.854e+03 1.00556 8.819e+03 7.055e+04
MPI Message Lengths: 1.936e+08 1.00950 2.185e+04 1.541e+09
MPI Reductions: 2.799e+03 1.00000

Also a summary per stage

Memory usage per stage (based on when it was allocated)

Time, messages, reductions, balance, flops per event per stage

Always send -log_summary when asking
performance questions on mailing list

44

PETSc ProfilingPETSc Profiling

Event Count Time (sec) Flops --- Global --- --- Stage --- Total
Max Ratio Max Ratio Max Ratio Mess Avg len Reduct %T %F %M %L %R %T %F %M %L %R Mflop/s

--
--- Event Stage 1: Full solve
VecDot 43 1.0 4.8879e-02 8.3 1.77e+06 1.0 0.0e+00 0.0e+00 4.3e+01 0 0 0 0 0 0 0 0 0 1 73954
VecMDot 1747 1.0 1.3021e+00 4.6 8.16e+07 1.0 0.0e+00 0.0e+00 1.7e+03 0 1 0 0 14 1 1 0 0 27 128346
VecNorm 3972 1.0 1.5460e+00 2.5 8.48e+07 1.0 0.0e+00 0.0e+00 4.0e+03 0 1 0 0 31 1 1 0 0 61 112366
VecScale 3261 1.0 1.6703e-01 1.0 3.38e+07 1.0 0.0e+00 0.0e+00 0.0e+00 0 0 0 0 0 0 0 0 0 0 414021
VecScatterBegin 4503 1.0 4.0440e-01 1.0 0.00e+00 0.0 6.1e+07 2.0e+03 0.0e+00 0 0 50 26 0 0 0 96 53 0 0
VecScatterEnd 4503 1.0 2.8207e+00 6.4 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00 0 0 0 0 0 0 0 0 0 0 0
MatMult 3001 1.0 3.2634e+01 1.1 3.68e+09 1.1 4.9e+07 2.3e+03 0.0e+00 11 22 40 24 0 22 44 78 49 0 220314
MatMultAdd 604 1.0 6.0195e-01 1.0 5.66e+07 1.0 3.7e+06 1.3e+02 0.0e+00 0 0 3 0 0 0 1 6 0 0 192658
MatMultTranspose 676 1.0 1.3220e+00 1.6 6.50e+07 1.0 4.2e+06 1.4e+02 0.0e+00 0 0 3 0 0 1 1 7 0 0 100638
MatSolve 3020 1.0 2.5957e+01 1.0 3.25e+09 1.0 0.0e+00 0.0e+00 0.0e+00 9 21 0 0 0 18 41 0 0 0 256792
MatCholFctrSym 3 1.0 2.8324e-04 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00 0 0 0 0 0 0 0 0 0 0 0
MatCholFctrNum 69 1.0 5.7241e+00 1.0 6.75e+08 1.0 0.0e+00 0.0e+00 0.0e+00 2 4 0 0 0 4 9 0 0 0 241671
MatAssemblyBegin 119 1.0 2.8250e+00 1.5 0.00e+00 0.0 2.1e+06 5.4e+04 3.1e+02 1 0 2 24 2 2 0 3 47 5 0
MatAssemblyEnd 119 1.0 1.9689e+00 1.4 0.00e+00 0.0 2.8e+05 1.3e+03 6.8e+01 1 0 0 0 1 1 0 0 0 1 0
SNESSolve 4 1.0 1.4302e+02 1.0 8.11e+09 1.0 6.3e+07 3.8e+03 6.3e+03 51 50 52 50 50 99100 99100 97 113626
SNESLineSearch 43 1.0 1.5116e+01 1.0 1.05e+08 1.1 2.4e+06 3.6e+03 1.8e+02 5 1 2 2 1 10 1 4 4 3 13592
SNESFunctionEval 55 1.0 1.4930e+01 1.0 0.00e+00 0.0 1.8e+06 3.3e+03 8.0e+00 5 0 1 1 0 10 0 3 3 0 0
SNESJacobianEval 43 1.0 3.7077e+01 1.0 7.77e+06 1.0 4.3e+06 2.6e+04 3.0e+02 13 0 4 24 2 26 0 7 48 5 429
KSPGMRESOrthog 1747 1.0 1.5737e+00 2.9 1.63e+08 1.0 0.0e+00 0.0e+00 1.7e+03 1 1 0 0 14 1 2 0 0 27 212399
KSPSetup 224 1.0 2.1040e-02 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 3.0e+01 0 0 0 0 0 0 0 0 0 0 0
KSPSolve 43 1.0 8.9988e+01 1.0 7.99e+09 1.0 5.6e+07 2.0e+03 5.8e+03 32 49 46 24 46 62 99 88 48 88 178078
PCSetUp 112 1.0 1.7354e+01 1.0 6.75e+08 1.0 0.0e+00 0.0e+00 8.7e+01 6 4 0 0 1 12 9 0 0 1 79715
PCSetUpOnBlocks 1208 1.0 5.8182e+00 1.0 6.75e+08 1.0 0.0e+00 0.0e+00 8.7e+01 2 4 0 0 1 4 9 0 0 1 237761
PCApply 276 1.0 7.1497e+01 1.0 7.14e+09 1.0 5.2e+07 1.8e+03 5.1e+03 25 44 42 20 41 49 88 81 39 79 200691

45

PETSc ProfilingPETSc Profiling

Communication Costs
Reductions: usually part of Krylov method, latency limited

VecDot
VecMDot
VecNorm
MatAssemblyBegin
Change algorithm (e.g. IBCGS)

Point-to-point (nearest neighbor), latency or bandwidth
VecScatter
MatMult
PCApply
MatAssembly
SNESFunctionEval
SNESJacobianEval
Compute subdomain boundary fluxes redundantly
Ghost exchange for all fields at once
Better partition

46

PETScPETSc

PETSc and GPUs

47

GPUs: DisillusionGPUs: Disillusion

Computing Architecture Schematic

Memory

PCI Express

CPU GPU

Memory

48

GPUs: DisillusionGPUs: Disillusion

Computing Architecture Schematic

PCI Express

8x20 GB/s2x12 GB/s

CPU GPU

8 GB/s, ~1us Latency

1000 GFLOPs SP
 250 GFLOPs DP

100 GFLOPs SP
 50 GFLOPs DP

Good for large FLOP-intensive tasks, high memory bandwidth

PCI-Express can be a bottleneck

� 10-fold speedups (usually) not backed by hardware

49

GPU Programming ApproachesGPU Programming Approaches

CUDA

Almost no additional code required

Vendor-lock

Relies on nvcc being available

OpenCL

Additional boilerplate code required (low-level API)

Broad hardware support (separate SDKs)

No more development effort from NVIDIA

Directives

Annotate existing code with OpenMP-style Pragmas

OpenACC and others

50

PETSc GPU SupportPETSc GPU Support

NVIDIA Cusp/Thrust/CUSPARSE

Compile PETSc with CUDA support

Use command line options to enable types, e.g.

-vec_type cusp -mat_type aijcusp

ViennaCL (OpenCL)

Compile PETSc with OpenCL support

Use command line options to enable types, e.g.

-vec_type viennacl -mat_type aijviennacl

Used for subsequent benchmarks

No change in application code required!

51

BenchmarksBenchmarks

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
1

10
2

10
3

10
4

10
5

10
6

10
7

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
)

Vector Size

Vector Addition x = y + z

NVIDIA GTX 285, CUDA
NVIDIA GTX 285, OpenCL

AMD Radeon HD 7970, OpenCL
Intel Xeon Phi Beta, OpenCL

Intel Xeon Phi Beta, native
Intel Xeon X5550, OpenMP

Intel Xeon X5550, single-threaded

52

BenchmarksBenchmarks

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
1

10
2

10
3

10
4

10
5

10
6

10
7

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
)

Number of Unknowns

50 CG Iterations (2D FD for Poisson)

NVIDIA GTX 285, CUDA
NVIDIA GTX 285, OpenCL

AMD Radeon HD 7970, OpenCL
Intel Xeon Phi Beta, OpenCL

Intel Xeon Phi Beta, native
Intel Xeon X5550, OpenMP

Intel Xeon X5550, single-threaded

53

ConclusionsConclusions

PETSc can help You

solve algebraic and DAE problems in your application area

rapidly develop efficient parallel code, can start from examples

develop new solution methods and data structures

debug and analyze performance

advice on software design, solution algorithms, and performance

petsc-{users,dev,maint}@mcs.anl.gov

You can help PETSc

report bugs and inconsistencies, or if you think there is a better way

tell us if the documentation is inconsistent or unclear

consider developing new algebraic methods as plugins, contribute if
your idea works

	About PETSc
	First Steps
	Application Integration

