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Abstract

Semiconductor device simulation relies on solving the most accurate models available, com-

monly constrained by the computational budget of a single machine. The recent shift from

purely two-dimensional to fully three-dimensional device layouts, however, entails much

higher computational cost for simulations of the same accuracy – typically orders of magni-

tude. A reduction of the accuracy to fit the same computational budget is highly undesirable

from an engineering point of view. Instead, accuracy can be preserved by increasing the

computational budget beyond what is provided by a single machine through a distributed

simulation on a compute cluster or supercomputer such as the Vienna Scientific Cluster.

Unfortunately, efficient simulations on supercomputers are very challenging and require a

careful exchange of data across processes. It is the aim of this project to master these

challenges by developing the necessary parallel algorithms and techniques. To define a

reasonable scope for this endeavor, we consider the solution of the Boltzmann Transport

Equation (BTE), which is commonly considered to be the best semiclassical description of

charge transport in semiconductors. Unfortunately, the conventionally employed stochas-

tic Monte Carlo method exhibits an unfavorable square-root dependence of accuracy versus

computational resources. A better alternative considered in this project is the deterministic

spherical harmonics expansion method with an accuracy directly proportional to the avail-

able computational resources. We will improve the discretization and derive scalable linear

and nonlinear solvers for the BTE by building on top of the generic parallel solver infras-

tructure provided by the software package PETSc. The result of this project will be the

first deterministic large-scale solutions of the BTE, providing unprecedented accuracy for

three-dimensional device simulations to stimulate for new insights in urgent modeling and

engineering challenges such as hot carrier degradation.

Existing fruitful collaboration with Prof. Ansgar Jüngel, Institute for Analysis and Scien-

tific Computing, TUWien, and Prof. Tibor Grasser, Institute for Microelectronics, TUWien,

will be continued in this project; both will contribute their expertise and experience on dis-

cretization schemes and macroscopic models for the BTE. Funding for the PI as a senior-

postdoctoral researcher and for one PhD student under the supervision of Prof. Grasser for

the duration of three years is requested.
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Introduction

The continued scaling of metal-oxide-semiconductor (MOS) field-effect transistors has re-

sulted in a shift to fully three-dimensional device geometries. For example, Intel is using

3D transistors (tri-gate transistors) in their latest Ivy Bridge, Haswell, Broadwell, and Sky-

lake processors, resulting in higher speed and lower power consumption than earlier planar

transistors. However, fully three-dimensional device simulations entail considerably higher

numerical cost than two-dimensional simulations of planar devices. For example, if a two-

dimensional device simulation on a 100× 100-grid is to be extended to a three-dimensional

device simulation on a 100× 100× 100 grid with the same numerical resolution, 100 times

more unknowns are encountered. In practice, the total numerical cost increases by even more

than a factor of 100, because the unknowns are then coupled in three spatial dimensions and

the cost of linear solvers typically grows faster than the number of unknowns.

The memory and processing power of current computers already allows for a simulation of

three-dimensional devices using traditional macroscopic models such as the drift-diffusion

model. However, feature lengths of modern scaled-down devices are below the range of

validity of commonly employed macroscopic models [1], hence full solutions of the Boltz-

mann Transport Equation (BTE) are sought. In addition to macroscopic quantities such as

the charge carrier density, a full solution of the seven-dimensional BTE also provides the

distribution of charge carriers with respect to their momentum. Such additional information

provides deeper insight and enables refined studies of high-energy effects such as hot carrier

degradation. The most popular method for this purpose is the Monte Carlo method, which,

however, leads to excessive costs due to its square-root dependence of the obtained accu-

racy on the total execution time [2]. Moreover, the inherent stochastic nature of the Monte

Carlo method renders the simulation of rare events or those evolving on a relatively long

time scale practically impossible. Examples include the floating body effect in silicon-on-

insulator devices, the simulation of transistors at technologically relevant radio frequencies,

or the resolution of high energy tails [3].

An attractive alternative solution approach for the stationary, six-dimensional BTE is the

deterministic spherical harmonics expansion (SHE) method. It relies on an expansion of

the three-dimensional momentum space into a discrete energy coordinate, while the angular
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Figure 1

Microprocessor trend data for the last 40 years. Kinks around 2005 in power consumption,

frequency, single-threaded performance, and the number of cores are apparent. Data up to 2010

collected by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond and C. Batten.

components are resolved by spherical harmonics. Consequently, only a nonlinear system of

partial differential equations in four dimensions (three spatial dimensions and one energy di-

mension) needs to be solved instead of six dimensions for a direct solution of the BTE. Sim-

ulation results using the SHE method with 80 Gigabytes of main memory and total execution

times on the order of minutes to hours for highly accurate two-dimensional device simula-

tions (i.e. a three-dimensional simulation space due to the additional energy coordinate) at

high accuracy have been reported recently in the literature [3]. In light of the previous ex-

ample of increasing the computational effort by two orders of magnitude when transitioning

from two-dimensional to three-dimensional device simulation, we estimate main memory

requirements of about 8 Terabytes for fully three-dimensional device simulations (using a

four-dimensional computational domain due to the additional energy coordinate) at high ac-

curacy using the SHE method. These requirements can only be met through a distributed

solution on supercomputers. With a typical memory configuration of 64 Gigabytes per com-

pute node (cf. Vienna Scientific Cluster, third generation), 125 compute nodes (out of 2020

provided on the Vienna Scientific Cluster) are required to provide the necessary 8 Terabytes

for fully three-dimensional device simulations. Because supercomputers also provide higher

computational resources through parallelism, total execution times on the order of minutes

to hours will be preserved.
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Figure 2

STREAM benchmark results on a single compute node equipped with dual socket Intel Xeon

CPUs. About 10 threads are necessary to use the memory channels well.

Let us now consider a single compute node in detail. The cubic increase in power consump-

tion with the clock frequency has resulted in a stagnation of clock frequencies of processors

around the year 2005, forcing vendors to provide multiple cores to further increase the com-

putational power. With the number of transistors increasing in accordance to Moore’s Law,

today only parallel implementations can leverage the full computational power available,

cf. Figure 1. However, the total number of floating point operations per second increases at

a higher rate than memory bandwidth between the processor and the main memory. This

disparity of processing power and memory bandwidth, known as memory wall, results in

applications with a low arithmetic intensity, i.e. the ratio of floating point operations per byte

transferred from main memory, to be bound by memory bandwidth. In particular, the nu-

merical solution of partial differential equations using conventional low-order finite element

or finite volume methods with iterative solvers are typcially limited by memory bandwidth.

Unfortunately, a single thread is unable to transfer data using the full memory bandwidth, but

instead about 10 threads (or MPI processes) are needed on typical two-socket configurations

to use the memory channels sufficiently well, cf. Figure 2. When using coprocessors such as

the Intel Xeon Phi or graphics processing units, even higher thread counts are necessary, for

which fine-grained parallelism at the computational hot-spots needs to be exposed.

Overall, we estimate highly accurate three-dimensional semiconductor device simulation

using the SHE method to run on 125 compute nodes with at least 1250 processes or threads.



4

3
D
S
o
lu
ti
o
n
o
f
th
e
B
o
lt
z
m
a
n
n
E
q
u
a
ti
o
n

S
ta
tu
s
o
f
R
e
s
e
a
rc
h

Status of Research

In this section we first review the state-of-the art for the SHE method for solving the BTE

∂f/∂t+ v · ∇xf + F · ∇pf = Q{f} (1)

with carrier velocity v, force field F , and scattering operator Q for the distribution function

f as a function of the spatial location x, momentum p, and time t. After that, the current

status of research for large-scale solvers for partial differential equations, not restricting the

discussion to semiconductor device simulation, is outlined.

The SHE Method

The SHE method relies on a truncated expansion of the unknown distribution function

f(x,p, t) into spherical harmonics Yl,m(θ, ϕ) at the spatial location x, momentum p, and

time t:

f(x,p, t) = f(x, E , θ, ϕ, t) ≈
L∑

l=0

l∑

m=−l

fl,m(x, E , t)Yl,m(θ, ϕ) , (2)

where E denotes energy (either total energy or kinetic energy), and θ and ϕ are the polar

angles in momentum space. Plugging this ansatz into the BTE and projecting the resulting

equation onto the spherical harmonics, one finally obtains a system of partial differential

equations for the unknown coefficients fl,m(x, E , t).

Spherical Harmonics Expansion Order

A larger expansion order L leads to a better approximation of the unknown distribution

function [4]. However, larger expansion orders considerably increase the complexity of the

problem. Consequently, the lowest expansion order L = 1 was used in first publications

on the SHE for the BTE [5, 6]. Later, arbitrary-order expansions were proposed and results

for expansions up to fourth order were presented [7]. Since then, expansion orders of three

to seven were demonstrated to be necessary for certain applications in order to compute

accurate numerical approximations of the distribution function [8].

To reduce the computational cost of higher-order expansions, an adaptive variable-order

scheme was developed by the PI, allowing for a two- to three-fold reduction in the number
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of unknowns [9]. Furthermore, we also showed that the resulting system of partial differen-

tial equations for the SHE method is weakly coupled [10], which allows for a reduction of

memory requirements for higher-order SHE proportional to (L+ 1)2 instead of (L+ 1)4.

Discretization of the Simulation Domain

The gradient of the distribution function f with respect to the momentum p and the compli-

cated scattering operator in the BTE for semiconductors in (1) require specialized numeri-

cal stabilization [11–14]. Other areas such as the simulation of fluids [15, 16], multiphase

flows [17, 18], plasmas [19, 20], and rarefied gas flows [21–23] solve slightly different forms

of the BTE. Therefore, a broad transfer of techniques for the parallel solution of the BTE

from another area to semiconductor device simulation is generally not possible for two rea-

sons: First, the established H-transform used to stabilize the SHE method by transforming

from kinetic energy to total energy [8, 24] as illustrated in Figure 3 suggests a staggered-grid

approach, in which even- and odd-order expansion coefficients are associated with differ-

ent geometrical entities. Second, inelastic scattering with phonons couples carrier energies

separated by the phonon energy, causing so-called phonon cascades in the solution. In com-

bination, these two unique traits mandate custom techniques tailored to the very specific

characteristics of the BTE for semiconductors.

Fully three-dimensional device simulations for complicated geometries are very demand-

ing when it comes to handling the grid. The only use of unstructured grids dates back to

Gnudi et al. [24], who used a prismatic mesh for first-order SHE expansions. To enable

the first fully three-dimensional device simulations using the SHE method, the PI developed

a discretization for the higher-order SHE method on unstructured grids [25]. Later, the PI

refined the scheme to a cell-centered variant [26], resolving the need for Delaunay meshes.

Despite of several techniques for minimizing memory footprint, highly accurate solutions

of the BTE using the SHE method cannot be obtained on a single compute node. The only

fully three-dimensional device simulation reported so far used a tetrahedral mesh consisting

of 27 456 vertices on a single compute node [25]. A desirable resolution for the spatial grid

is a spacing of 0.1 nm, which results in a total of 4.8 million vertices for a fin with 20 nm

long, 20 nm high, and 12 nm wide. Hence, simulations two orders of magnitude larger than

those reported so far are desired.
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Figure 3

Left: Trajectories of carriers in free flight are given by constant total energyH . While beneficial

for stabilization (H-transform), the computational domain now depends on the potential.

Right: Schematic of the system matrix structure for discrete energies H1, . . . , H4. Each trajec-

tory leads to a block matrix coupled to other blocks via inelastic scattering processes.

Solution of the Linear System

First publications on the SHE method relied on direct solvers due to the small number of

unknowns encountered at that time [5, 6]. Meanwhile, the linear systems have become to

large for a direct solution, hence iterative methods from the family of Krylov methods [27]

have been reported more recently [24]. Jungemann et al. pointed out the importance of pre-

conditioning [14] and reported results for a sequential incomplete LU (ILU) factorization

preconditioner, which was used in a black-box manner without employing additional struc-

tural information available at the continuous level.

The PI developed a block-ILU preconditioner based on properties of the underlying physical

processes for the SHE method [28], cf. Figure 3. This preconditioner is based on the obser-

vation that a good approximation of the full linear system is obtained if inelastic scattering

processes are ignored, resulting in a block-diagonal system for which preconditioners per

block can be computed in parallel. The high degree of parallelism enabled the successful

use of graphics processing units (GPUs) in the solver cycle stage, whereas the setup stage

was run on the CPU. However, the block-ILU preconditioner exhibits similar non-optimal

asymptotic behavior than other ILU-based preconditioners, thus the number of solver iter-

ations required for convergence grows with the system size. Other preconditioners for the

SHE method based on advanced techniques, especially multigrid techniques, have not been

investigated yet, but appear promising and will be considered in this project.
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Physics in the SHE Model

Substantial improvements of the accuracy of the SHE method have been made since its intro-

duction. It is now possible to obtain the same accuracy of the SHE method as the stochastic

Monte Carlo method, yet at a fraction of the computational cost [29]. Most importantly, full-

band effects are captured for arbitrary order expansions based on extensions of an approach

initially proposed by Vecchi et al. [8, 30]. Available charge carrier scattering mechanisms

include phonon scattering, alloy scattering, impurity scattering, impact ionization, and sur-

face roughness scattering (see [8] and references therein). To capture carrier generation and

recombination, the PI developed a bipolar SHE method [31] as well as a scheme for carrier-

carrier scattering [32] to more accurately model highly energetic carriers.

While it is easier to include accurate physics in the Monte Carlo method, the SHE method is

applicable to scenarios for which the Monte Carlo method is not suitable, for example small

signal analysis, small currents, noise, and more recently the simulation of avalanche break-

down in pn-junctions [8, 33]. Also, the ability of computing the distribution function over

virtually unlimited orders of magnitude has stimulated important contributions in modeling

hot carrier degradation of both short- and long-channel devices [34, 35].

Large-Scale Solvers for Partial Differential Equations

A finite volume method is used for the discretization within the SHE method, hence general

principles of parallel solvers in areas such as computational solid and fluid dynamics can

be adopted. Therefore, we subsequently summarize the main architectural features of large-

scale solvers for partial differential equations encountered in the these areas.

Domain Setup and Decomposition

When using a structured grid, the computational domain of size Nx × Ny × Nz is usually

decomposed into subdomains of size nx × ny × nz for each process. Additional overlap

regions (halo or ghost layers) are added to facilitate an efficient exchange of information

across subdomains. As reflected by recent research on minimizing communication across

processes [36], best performance is obtained when minimizing the surface-to-volume ratio

of all subdomains [37].
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Complicated geometries mandate the use of unstructured grids, which no longer allow for

a direct decomposition merely based on index calculations. Instead, graph partitioner pack-

ages such as ParMETIS [38] or Pt-Scotch [39] are used for a decomposition, minimizing

subdomain surfaces [40]. A graph partitioner may also be run on a coarse mesh followed by

a refinement of the subdomains on each process until the desired resolution is obtained [41].

Even if subdomain surface areas are minimized, communication ultimately remains a bot-

tleneck in the strong scaling limit because of the inherent latency of the communication

network. Also, non-blocking communication needs to be used on very large clusters with up

to millions of cores in order to overlap data exchange and computations [42]. Although we

do not aim at simulations at such an extreme scale in this project, awareness for these kinds

of bottlenecks is crucial for the design of efficient algorithms and implementations.

Krylov Solvers and Preconditioners

Direct solvers become prohibitively expensive for large-scale numerical solutions of partial

differential equations in general and the SHE method in particular, hence suitably precon-

ditioned iterative solvers are the methods of choice [43]. Frequently used iterative solvers

are the conjugate gradient method for symmetric positive definite system matrices and the

generalized minimum residual (GMRES) method for indefinite systems. Domain decompo-

sition preconditioners and multigrid methods are both examples of the divide and conquer

paradigm and therefore particularly attractive for large-scale solvers due to their superior

asymptotic behavior when compared to other methods [44]. These favorable properties are

also reflected in the emerging high performance conjugate gradient (HPCG) benchmark1 and

the high performance geometric multigrid (HPGMG) benchmark2.

Complex geometries such as transistors with thin oxide layers can make it impossible to

derive a suitable coarse grid hierarchy for geometric multigrid. In such cases, algebraic

multigrid preconditioners are popular black-box preconditioners, since they are solely based

on information in the system matrix. While many flavors of black-box algebraic multigrid

techniques have been developed [45], the injection of domain-specific knowledge into alge-

braic multigrid preconditioners can pay off to achieve optimal performance [46].

1http://hpcg-benchmark.org/
2https://hpgmg.org/
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Many-Core Architectures

A lot of research was conducted recently on exposing fine-grained parallelism in iterative

solvers and preconditioners in order to efficiently use many-core architectures such as graph-

ics processing units (GPUs) and Intel’s many integrated core (MIC) architecture. This in-

cludes contributions by the PI, both in the form of publications [47–50] and via the free

open source linear algebra and solver library ViennaCL3. The dominant factor for overall

performance in the context of the SHE method are the linear solvers. Fortunately, signifi-

cant progress has been made in recent years: Fast kernels for sparse matrix-vector products

are available [51, 52], which constitute essential building blocks for smoothing operators in

multigrid methods. Several components for preconditioners, e.g. multi-coloring and level

scheduling techniques [53, 54], are available. Results on algebraic multigrid preconditioners

on GPUs [55, 56] are promising for a successful application to the SHE method.

Despite the availability of efficient building blocks, the high cost of data transfers often

mandates custom compute kernels in order to avoid unnecessary communication to and from

main memory, or across the PCI-Express bus [47]. Furthermore, GPUs only exhibit a fairly

narrow sweet spot: On the one hand, system sizes needs to be large enough to hide PCI-

express latencies, but also small enough to fit into the available GPU main memory.

Large-Scale Semiconductor Device Simulation

Because one- and two-dimensional semiconductor device simulations have long been suffi-

cient, research efforts for semiconductor device simulation on distributed memory machines

were focused on quantum mechanical simulations. As a result, very few publications deal

with semiclassical device simulations on distributed memory machines: Early results for a

three-dimensional parallel Monte Carlo simulator on up to 10 processors were reported by

Kepkep et al. in 2001 [57]. In 2009, a three-dimensional parallel Monte Carlo simulator

with results for up to 64 cores was presented by Zhang et al. [58]. Lin et al. demonstrated

simulations based on the drift-diffusion system using an algebraic multigrid preconditioner

on up to 4096 cores [59]. Gong et al. reported the solution of the drift-diffusion system for

a circuit of 24 transistors using of up to 48 cores in 2012 [60]. However, no results on using

the SHE method on distributed memory machines have been reported yet.

3http://viennacl.sourceforge.net/
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Aims of the Project

Industrially relevant state-of-the-art device layouts for logic and memory are fundamentally

three-dimensional [61]. A fully quantum-mechanical treatment is computationally too ex-

pensive if complex geometries including process variability effects are to be considered,

which rules out simpler mode-space approaches. On the other hand, macroscopic trans-

port models such as the drift-diffusion model are no longer valid in the deca-nanometer

regime [1], hence results obtained from fitting to data no longer reflect the underlying phys-

ical processes properly. A good compromise are solutions of the semiclassical BTE, partic-

ularly when using the SHE method, providing the necessary accuracy for predictive device

simulation at manageable computational expense. Applications include the modeling of flash

cell programming by hot electrons, for which a truly-3D bipolar SHE solver is attractive [61].

The aim of this research project is to conduct the first large-scale, highly accurate 3D semi-

conductor device simulations based on deterministic solutions of the stationary BTE.We will

develop the necessary parallel algorithms to simulate FinFET transistors with meshes hold-

ing up to a few million vertices on supercomputers such as the Vienna Scientific Cluster. The

resulting code will target CPU-only clusters, clusters equipped GPUs, and clusters with co-

processors such as the Intel Xeon Phi to maximize long-term impact and utility. Even though

the focus of this project is on the SHE method, our results may also be applicable to other

approaches such as Discontinuous Galerkin methods [62] or multigroup equations [63].

The Institute for Microelectronics and the Institute for Analysis and Scientific Computing

will join their expertise to achieve the project aim and successfully overcome the chal-

lenges from the mathematics, computer science, and physics point of view. Thereby, this

project will further strengthen the already existing successful collaboration [10, 25, 26, 28,

31, 32] and provide important stimuli: Research on semiconductor device reliability lead by

T. Grasser will benefit from highly resolved high energy tails for an improved modeling of

hot carrier degradation. Similarly, full solutions of the BTE constitute an important baseline

for the development of spin-based macroscopic models at the group of A. Jüngel. Existing

collaborations with industrial partners at the Institute for Microelectronics provide access to

valuable input for state-of-the-art technology and ensure early and frequent feedback from

users of the parallel SHE method throughout the project.
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The individual subjects of research on the SHE method within this project are as follows:

Discretization Fast Linear Solvers Efficient Nonlinear Solvers

Logarithmic SHE Parallel Preconditioners Fast Newton-like Schemes

Sparse Energy Grid Tensor Structure Multimodel Corrections

The PI and the PhD student will jointly work on all three modules. A. Jüngel will contribute

his experience in the discretization module, T. Grasser will share his experiences with macro-

scopic transport models in the nonlinear solver section. Since a large fraction of each of the

three modules can be addressed in isolation, unexpected delay in one module will not block

progress in others. More details on the individual modules are given in the following.

Advances in the Discretization

As depicted in Figure 3 earlier, the SHE method requires an embedding of a spatial device

mesh into an augmented (x, H)-space, where x denotes the spatial coordinates and H the

total energy coordinate. With the employed tensor-construction using an energy spacing of

about 10meV, there are several hundred discrete energies Hn necessary to span the typical

energy range of several electron Volts. However, two problems are encountered with this

scheme, which have not been addressed yet: First, the exponential decay of the distribution

function with energy leads to a numerical range of solution values spanning ten to fifty

orders of magnitude, which complicates the solution process. Second, the dependence of

the computational domain on the electrostatic potential may result in a large fraction of the

simulation domain to be unused at high bias voltages. We plan to address both issues.

Logarithmic SHE Method

The carrier distribution function f is known to be nonnegative and discrete approximations

of the distribution function can safely be assumed positive within the conduction and valence

bands. Also, f asymptotically decays exponentially to zero with respect to energy, hence an

expansion of the energy-dependence of f into higher-order polynomials is a poor approx-

imation, but instead f needs to be approximated by low-order polynomials in sufficiently

small intervals. Consequently, the energy-dependence of f is approximated by piecewise

constant basisfunctions with tiny (about 10meV) intervals using the SHE method.
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We will address the problems induced by the exponential decay of f with energy via an

expansion of the logarithm of f into spherical harmonics at a given spatial location, i.e.

log f(x, E , θ, ϕ, t) =: g(x, E , θ, ϕ, t) ≈
L∑

l=0

l∑

m=−l

gl,m(x, E , t)Yl,m(θ, ϕ) , (3)

which transforms the asymptotically exponential decay into a linear function due to the

Fermi-Dirac distribution attained in equilibrium. Such an expansion of the logarithmic dis-

tribution function is in analogy to Slotboom variables for the drift-diffusion system and has

the following important benefits:

• The function g also fulfills a BTE where the linear free streaming operator is un-

changed, only the collision operator becomes (weakly) nonlinear. However, since the

Boltzmann-Poisson system is nonlinear anyway, this additional nonlinearity does not

complicate the solution process.

• f and g share the same discrete conservation properties when using the established

finite-volume discretization.

• The energy dependence of g can be approximated well by low-order polynomials over

larger energy intervals, particularly in the thermal tail of the distribution function. We

expect that this will considerably enhance the smoothing properties of relaxation meth-

ods for use in multigrid methods (cf. subsection on preconditioners). Also, we expect

that a discretization using higher-order polynomials with respect to energy can provide

higher accuracy for fixed computational cost.

Sparse Energy Grid

In recent work we have applied the SHE method for the first time to power devices [26],

for which bias voltages are substantially higher than for transistors used for logic circuits

in conventional complementary MOS-technology. While the H-transform ensured stability

at the applied bias of 16 Volt, it also required a proportionally larger total energy range

to be considered for the simulation. The larger total energy range, however, resulted in a

much higher number of elements in the augmented mesh, which was obtained from a tensor-

construction based on the spatial mesh using N discrete energies for the extension into the
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x
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Figure 4

Left: Schematic view of a tensor-mesh in (x, H)-space for one-dimensional device simulation

with exemplary band edge depicted in red. Many unneeded boxes are stored in the band gap and

at high kinetic energies when using the conventional scheme.

Right: We will develop a datastructure such that only boxes essential for the simulation at rele-

vant kinetic energies are stored in memory.

(x, H)-space. With the typical energy spacing of 10meV as mandated by phonon energies

and a bias of 16 Volt, N is on the order of 1 600, resulting in memory requirements for the

mesh in (x, H)-space being about 1 600 times higher than for the original spatial device

mesh. However, most elements in the augmented mesh in (x, H)-space do not contribute

to the simulation at such high bias, because they either represent negative kinetic energies

in the band gap, or extremely high kinetic energies where the distribution function is not of

interest, cf. Figure 4.

In order to enable successful applications of the SHE method to power devices with an

applied bias of up to 100 Volt, we will develop a datastructure to store only those elements

in (x, H)-space which represent relevant kinetic energies. This will be achieved by only

storing elements right on or above the band edge up to a user-defined kinetic energy. In the

background, index shifts determined by the discrete energy will be employed to access the

correct element and data, so that each of the stencil operations for the systemmatrix assembly

can still be carried out at constant cost. Overall, the proposed datastructure will result in

memory requirements independent of the applied bias. The price to pay is an additional

index calculation when accessing data for each element, which, however, is a minor price to

pay for the huge savings in memory requirements at high bias voltages.



14

3
D
S
o
lu
ti
o
n
o
f
th
e
B
o
lt
z
m
a
n
n
E
q
u
a
ti
o
n

A
im

s
o
f
th
e
P
ro
je
c
t

Fast Linear Solvers

The sparse linear systems obtained via the SHE method are too large to be solved efficiently

with direct solvers. Iterative solvers, on the other hand, require good preconditioners when

used for the SHE method [14]. Unfortunately, efficient parallel black-box preconditioners do

not exist in general. Consequently, the aim of this module is to develop specialized parallel

preconditioners for the SHE method to obtain fast convergence on supercomputers.

Parallel Preconditioners

All preconditioners employed for the SHE method so far are based on incomplete LU fac-

torizations. However, the sequential nature of incomplete LU factorization preconditioners

is not suitable for a direct application on distributed memory machines. Some parallelism

can be achieved by concurrently applying incomplete LU factorizations to suitably chosen,

independent blocks on the matrix diagonal. The PI demonstrated such a block preconditioner

for the SHE method using incomplete LU factorizations on shared memory machines [28],

where physical properties of the SHE method were exploited to specify the individual blocks

based on discrete total energies, cf. Figure 3. Because the number of discrete energies N

is at least 100 even if only low voltages are applied, the resulting preconditioner exposed

enough parallelism so that good performance could even be obtained GPUs. In this project

we will extend the described block decomposition to a parallel domain decomposition pre-

conditioner for distributed memory machines. This first step will be accomplished using the

software package PETSc4 and serve as the starting pointer for further investigations. The

number of discrete energies N will suffice to scale simulations up to the 125 compute nodes

set as a target in the introduction.

Our second step is to increase the parallelism for each subdomain by considering a parallel

version of incomplete LU factorization preconditioners as recently proposed by Chow and

Patel [64]. Their variant replaces the sequential factorization stage with a parallel nonlinear

relaxation scheme and has been demonstrated to run efficiently on Intel’s MIC architecture.

We will extend their preconditioner to GPUs using our previous experience [47–50], exten-

sively document its efficiency for the SHE method, and ensure that our implementation is

freely available to the computational science community through ViennaCL and PETSc.

4http://www.mcs.anl.gov/petsc/
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Figure 5

Iterative solver iterations required for the SHE method as a function of the inverse grid spacing

1/h when using an incomplete LU factorization preconditioner for the simulation of an nin-

diode. The exemplary data for preconditioners with optimal scaling illustrate our project aim

of finding optimal parallel preconditioners for the SHE method, where the number of solver

iterations remains constant or grows only very mildly as the grid is refined.

In a third step, we will investigate the use of multigrid preconditioners for the SHE method.

We will start with existing methods available via PETSc, which also includes the precondi-

tioners implemented in the packages Hypre5 and ML6. Earlier work on multigrid precondi-

tioners for the drift-diffusion model [59] suggests that these methods may also be an effective

preconditioner for the SHE method. However, the additional energy coordinate required for

the SHE method with the exponential decay of the distribution function with increasing ki-

netic energy may destroy the necessary smoothing properties of conventional relaxations.

We will experiment with relaxation methods taking the exponential decay of the distribution

function into account, both by developing relaxation routines explicitly tailored to the SHE

method, and by employing the logarithmic SHE method discussed earlier. If no satisfactory

results can be obtained using these algebraic multigrid variants, we will fall back to the in-

vestigation of geometric multigrid preconditioners, even though these may not be applicable

for complicated device geometries. In either case, our efforts in finding a preconditioner for

the SHE method with optimal scaling as depicted in Figure 5 will finally be summarized in a

taxonomy similar to that of Elman et al. for the incompressible Navier-Stokes equations [65].

5http://acts.nersc.gov/hypre/
6http://trilinos.org/packages/ml/
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Exploiting the Tensor-Structure of Higher-Order SHE

Spherical and elliptical symmetries in the underlying physical processes allow for a decou-

pling of the angular component of the phase space from the (x, H)-space when using the

SHE method [8, 10]. As a consequence, the resulting system matrix A exhibits a tensor-

product structure [10]:

A =
9∑

i=1

X i ⊗ Y i , (4)

where the matrices X i describes the couplings in (x, H)-space, the matrices Y i denote the

angular couplings of the spherical harmonics, and ⊗ denotes the Kronecker product.

We plan to exploit the Kronecker-product structure (4) in a novel fashion as follows:

• Develop fast matrix-vector product routines for CPUs as well as accelerators by inlin-

ing the a-priori known matrices Y i directly in the kernel sources rather than holding

the values in main memory. This allows for the full memory bandwidth to be available

for loading the matrices X i and also maximizes the cache available for the vectors.

• Develop preconditioners for higher-order SHE based on a much smaller system matrix

for lowest-order SHE. The preconditioner will then also be a tensor product W ⊗ V ,

where the dimensions ofW and V match those ofX i and Y i. For lowest-order SHE,

V degenerates to a one-by-one matrix.

These two steps will give rise to a “dual-order” solver scheme, from which we expect sub-

stantial savings in memory and memory bandwidth when compared to an explicit storage of

the system matrix, ultimately also reducing execution time. The proposed scheme extends a

related strategy originally proposed for nodal finite elements [66] to the SHE method.

Efficient Nonlinear Solvers

The aim of this module is to accelerate the existing nonlinear solution scheme of the SHE

method, which is a Newton-scheme supplemented by Picard iterations for additional robust-

ness with respect to the initial guess provided [8]. Details on how we plan to reduce the

average cost of each nonlinear iteration and also the overall number of nonlinear iterations

are given in the following.
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Fast Newton-like Schemes

A common optimization for Newton-like schemes is to reuse the preconditioner for inverting

the Jacobi matrix for several iterations and only recompute the preconditioner if convergence

rates have degraded. Unfortunately, the H-transform prevents a direct application of such a

strategy, because the dimensions of the linear systems change in response to a modification

of the band edge induced by updates of the electrostatic potential.

We plan to enable a preconditioner reuse by augmenting the computational domain slightly

to consider also energies in the band gap close to the band edge. In the first nonlinear

iteration, the SHE coefficients for these forbidden states will already be part of the linear

system, but forced to zero (trivial unknowns). If these initially forbidden states become part

of the computational domain in the second or a later nonlinear iteration, the system matrix

does not change its dimensions, but only its values. Therefore, the preconditioner from the

first iteration can be reused and is only recomputed if the convergence rate degrades. We

expect savings in execution time by up to a factor of two.

Multimodel Corrections

About 20 to 100 Picard iterations (also referred to as Gummel iterations) are usually per-

formed first to improve the quality of the initial guess for Newton’s method [8]. We plan

to substitute about half of these expensive numerical solutions of the SHE equations by far

less expensive solutions of suitably modified drift-diffusion equations to reduce the overall

numerical cost. Because the drift-diffusion system can be derived from the SHE equations

in the scaling limit of dominant phonon and electron-electron scattering [67], we refer to our

proposed approach as multimodel scheme.

In order for the drift-diffusion model to reproduce the SHE method for a given potential

profile, we will fit the free parameter in the drift-diffusion model, namely the carrier mobility,

to numerically reproduce the carrier densities computed by the SHE method in the respective

nonlinear step. This modified drift-diffusion system will then be solved together with the

Poisson equation at much lower cost, and the updated electrostatic potential will be fed back

to the full SHEmodel. We emphasize the novelty and innovative character of this multimodel

approach, which is enabled by the availability of a model hierarchy for solving the BTE.
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Infrastructure of the Research Institutes

The proposed project fits well into the research activities of the Institute for Microelectronics

and the Institute for Analysis and Scientific Computing. The former has a substantial amount

of experience in the area of device simulation and will benefit considerably from the results

obtained in this project for ongoing research on device reliability. The latter institute has

a strong reputation in the development of new numerical methods in quantum mechanics,

semiclassical device models, and finite element methods.

Tight collaborations with industrial partners (austriamicrosystems, Infineon) have been set

up at the Institute for Microelectronics within several generations of Christian Doppler Lab-

oratories as well as in European projects (ATHENIS, MODERN, MORDRED). Ongoing

fruitful cooperations with TU Eindhoven have led to the development of efficient schemes

for the solution of nonlinear discrete systems. A joint project with Global TCAD Solutions

in an international project with Chinese institutions has been approved in summer 2015.

The close cooperation of the Institute for Microelectronics and the Institute for Analysis

and Scientific Computing is a long tradition and dates back to the 1980s. In particular, the

fruitful collaboration of the PI with Prof. Grasser and Prof. Jüngel has resulted in over 20

publications within the last five years.

The available infrastructure at the two institutes makes us well prepared for developing the

proposed algorithms and their implementations. High-end GPUs from NVIDIA and AMD

as well as Xeon Phi (Knight’s Corner) coprocessors are available in powerful work stations

at both institutes. Moreover, the Institute for Microelectronics hosts a cluster consisting of

13 nodes, each equipped with four AMD Opteron CPUs and 32 to 128 gigabytes of main

memory. To test scalability in a realistic environment, we ask for appropriate allocations

on the Vienna Scientific Cluster, including access to the next-generation Xeon Phi (Knight’s

Landing) processors and GPUs to the extent available.

Ethical Issues

There are no ethical issues associated with this research project proposal.



19

3
D
S
o
lu
ti
o
n
o
f
th
e
B
o
lt
z
m
a
n
n
E
q
u
a
ti
o
n

T
im

e
S
c
h
e
d
u
le

Time Schedule

The project is scheduled for 36 months. In the first year, the PI and the PhD student will work

on the MPI-based parallelization of the existing simulator. First results on the effectiveness

of different parallel preconditioners are expected towards the end of the first year. The sec-

ond year is devoted to intensive work on the discretization module by the PI and further

linear solver improvements by the PhD student by investigating multigrid approaches and

exploiting the tensor structure for higher-order SHE methods. In the third year, the PI will

optimize the most efficient preconditioners identified by the PhD student for accelerators,

while the PhD student will work on the nonlinear solver module.

Dissemination

As part of their scientific curriculum, both the PI and the PhD student will publish signifi-

cant results obtained during the course of the project using the usual channels (journal papers,

conferences, etc.) in agreement to the Open Access policy of the FWF. Newly implemented

algorithms are thoroughly tested and integrated into our free open source SHE simulator

ViennaSHE7. Any general purpose solver components developed as necessary by-products

will be made available through ViennaCL and subsequently PETSc. We consider this addi-

tional free open source code dissemination effort vital for promoting Open Science in order

to give other groups the ability to build their work on top of ours and in turn provide feed-

back and valuable suggestions on further improvements. At the end of the project, all project

achievements will also be documented in detail in the dissertation of the PhD student.

Human Resources

The PI has accumulated valuable experience with the SHE method in a previous project

funded by the Austrian Science Fund (P23598). With the proposed project he aims to prove

early in his academic career that he is able to successfully lead a research project. His

one-year stay as a postdoctoral researcher with the PETSc team at the Argonne National

Laboratory, USA, makes him well prepared for the computational challenges in this project.

The PhD student will become acquainted with practical aspects of the state-of-the-art in par-

allel computing and the efficient use of modern computing architecture. This complements

his former education in technical mathematics with a focus on computer science perfectly.

7http://viennashe.sourceforge.net/
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Requested Funding

To conduct the proposed research, funding for the PI (senior post-doctoral level) and one

doctoral student (candidate: A. Morhammer) for a period of 36 month is required.

Name First Year Second Year Third Year Total

K. Rupp 69 810 e 69 810 e 69 810 e 209 430 e

A. Morhammer 36 340 e 36 340 e 36 340 e 109 020 e

Total 106 150 e 106 150 e 106 150 e 318 450 e

The coverage of travel costs is requested for research visits at the institutions of our scien-

tific collaborators: In the first year, a visit at the PETSc group at Argonne National Labo-

ratory, USA, will be vital for setting up an effective MPI-based device simulator. A visit

at Prof. Gundolf Haase, University of Graz, Austria, at the end of the second year will re-

fine further directions on optimizing the best preconditioners identified for the SHE method

for graphics processors. Finally, a stay at Prof. Christoph Jungemann at RWTH Aachen,

Germany, towards the end of the project will explore possible future directions in device

modeling based on the higher accuracy of the fully parallel simulator.

Name Destination Duration Travel Cost Hotel Cost Sum

First Year

K. Rupp Argonne, USA 12 days 1 000 e 600 e 1 600 e

A. Morhammer Argonne, USA 12 days 1 000 e 600 e 1 600 e

Sum 3 200 e

Second Year

K. Rupp Graz, Austria 12 days 50 e 600 e 650 e

A. Morhammer Graz, Austria 12 days 50 e 600 e 650 e

Sum 1 300 e

Third Year

K. Rupp Aachen, Germany 12 days 200 e 600 e 800 e

A. Morhammer Aachen, Germany 12 days 200 e 600 e 800 e

Sum 1 600 e

Total 6 100 e
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[2] K. Aoki, A. Jüngel, and P. Markowich, “Small velocity and finite temperature variations

in kinetic relaxation models,” Kinetic and Related Models, vol. 3, no. 1, pp. 1–15, 2010.
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[32] A. Jüngel and M. Winkler, “A Degenerate Fourth-Order Parabolic Equation Model-

ing Bose-Einstein Condensation Part II: Finite-Time Blow-Up,” Communications in

Partial Differential Equations, vol. 40, pp. 1748–1786, 2015.
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