
The OpenCL Library Ecosystem:
Current Status and Future Perspectives

Karl Rupp
Freelance Computational Scientist

Linke Bahnzeile 7/6
A-2486 Landegg, Austria

me@karlrupp.net

ABSTRACT
OpenCL as an open standard for parallel programming of
heterogeneous systems seems to be an attractive choice for
software library implementations. Indeed, iwocl.org1 lists 83
OpenCL-enabled libraries as of February 12, 2016, suggest-
ing a healthy library ecosystem. On closer inspection, how-
ever, a significant share of these libraries are either OpenCL
bindings for other languages, libraries with OpenCL features
in experimental state at best, or orphaned. Clearly, there
is room for improvement; but what is required to improve
the state of the OpenCL-enabled library ecosystem? Which
future extensions to OpenCL can make library development
easier? This talk aims to stimulate discussion by sharing
lessons learnt in the area of high performance computing
through the development of ViennaCL2.

CCS Concepts
•Computing methodologies→ Parallel programming lan-
guages; •Software and its engineering → Software li-
braries and repositories; Just-in-time compilers; Reusabil-
ity;

Keywords
OpenCL; SPIR; SyCL; ViennaCL

1. INTRODUCTION
A rich software library ecosystem is important for build-

ing multi-layered software stacks pushing the limits of what
can be done with available hardware. OpenCL can play an
important role in such a software stack, as it allows for tar-
geting different hardware architectures with a single kernel
language and allows for running implementations on the best
available hardware on the respective target machine. At the
same time, the requirements on a software library in such

1http://www.iwocl.org/
2http://viennacl.sourceforge.net/

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

IWOCL ’16 April 19-21, 2016, Vienna, Austria
c© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4338-1/16/04.

DOI: http://dx.doi.org/10.1145/2909437.2909452

as stack differ substantially from those of an application di-
rectly tailored to the needs of an end-user. A non-exhaustive
list of key differences of a software library stack in compar-
ison to an application for end-users is as follows:

1. High number of kernels. If several OpenCL-enabled
libraries are supposed to interact, each will contribute
its own set of compute kernels. These kernels need to
be compiled at some point, which is usually achieved
by the just-in-time compiler. Consider a family of ker-
nels parameterized by indices (i, j), where the i-th en-
try of a buffer is set to j. Each of these kernels re-
quires merely a single line of code in the body and is
thus expected to impose small just-in-time compila-
tion overhead. As Figure 1 shows, the compilation of
64 such kernels takes on the order of seconds, depend-
ing the number of OpenCL programs the kernels are
distributed over. In many cases, a just-in-time over-
head on the order of seconds is too high.

2. Complex interaction of kernels. Often a code
skeleton is provided by a library, to which a library
user provides customization through user-defined rou-
tines. Prominent example are custom operators for
reductions or sorting to avoid unnecessary pre- and
post-processing of data. The conventional approach in
host languages such as C and C++ is to provide a call-
back routine. In OpenCL, the just-in-time compilation
of kernels requires the user to either provide OpenCL
kernel code, which is then just-in-time compiled with
the full OpenCL program, or to rely on compiler-based
approaches such as SyCL. Neither of these two options
is fully satisfactory.

3. Heterogeneous OpenCL support. The OpenCL
ecosystem evolves quickly, with a new standard being
released every 18-24 months. Library implementers,
however, often have to rely on the smallest common de-
nominator among mainstream implementations (which
to-date is OpenCL 1.1 or 1.2), because the resources for
supporting different code branches for different OpenCL
versions are not available. The problem is amplified by
the average life-time of machines on the order of three
to five years, where the software stack may not be up-
to-date with the latest features.

Performance portability of OpenCL is not further considered
in the following, because it is not a concern specific to a soft-
ware stack rather than an application. Moreover, strategies
for ensuring performance portability with OpenCL have al-
ready been developed [1, 3, 4, 5].

http://www.iwocl.org/
http://viennacl.sourceforge.net/
http://dx.doi.org/10.1145/2909437.2909452


 0.001

 0.01

 0.1

 1

 10

 100

1x64 2x32 4x16 8x8 16x4 32x2 64x1

T
im

e
 (

s
e
c
)

Programs x Kernels

OpenCL JIT Overhead for 64 Simple Kernels

AMD APP SDK 3.0, CPU
AMD fglrx 14.301.1019, GPU
INTEL OpenCL SDK 14.2, CPU
NVIDIA CUDA 7, GPU
NVIDIA CUDA 7, GPU, cached

Figure 1: Overhead of the just-in-time compilation
of 64 simple OpenCL kernels with different OpenCL
SDKs [2]. The kernels are equally spread over a
varying number of OpenCL programs. A kernel
buffering mechanism can reduce the significant (pos-
sibly unacceptable) overhead on the order of seconds
to the acceptable range on the order of microsec-
onds. Unfortunately, such a caching mechanism as
implemented in the NVIDIA CUDA 7 SDK is not
provided by all SDKs.

2. POSSIBLE PATHS FORWARD
The three points discussed in the introduction underline

that OpenCL needs to improve its attractiveness for soft-
ware libraries. The availability of OpenCL as a shared li-
brary with a standardized C binary interface circumvents
many problems of compiler-based approaches for program-
ming massively parallel hardware. On the other hand, the
problems outlined above need to be addressed. To do so,
the following improvements are proposed for discussion in
the community:

1. Reducing overhead of just-in-time compilation.
A kernel cache can significantly reduce just-in-time
compilation overheads, but most OpenCL SDKs do
not provide such a cache (cf. Figure 1). While a library
may implement such a cache by itself, the complex in-
teraction with peculiarities of the filesystem is error-
prone. Moreover, N different kernel caching mecha-
nisms by N interacting OpenCL-enabled libraries is a
maintenance nightmare for a complex software stack.
Consequently, requiring the availability of (optional)
kernel caching in an OpenCL SDK would benefit the
whole library ecosystem.

Another possible remedy for the overheads of just-in-
time compilation is the standard portable intermediate
representation (SPIR). Library maintainers can lever-
age SPIR to circumvent the kernel language front-end
in the just-in-time compiler and to directly feed the
machine code generators in the compiler backend. In
addition to reduced just-in-time compilation overhead,
the more low-level nature of SPIR may also offer better
optimization opportunities. These enhancements to
the OpenCL library ecosystem, however, require wide-
spread availability of a stable SPIR, which is (as of
early 2016) not the case.

2. Better support for user-provided function point-
ers. If OpenCL is used for execution on the host CPU,
a user should be given the option to pass host-based
function pointers (external C linkage) to OpenCL ker-
nels. For example, an OpenCL work item should have
explicit means to call thread-safe routines in external
(static or shared) libraries. This would significantly
improve composability of libraries (even if only on the
CPU), allowing a mix-and-match of libraries with and
without OpenCL support. In particular, OpenCL ker-
nels would no longer be restricted to only calling other
OpenCL routines.

3. Fusion of OpenCL and Vulkan? There may be in-
centives of different nature for certain vendors to only
support an older OpenCL version, or to not support
OpenCL at all. As such, once a single vendor possesses
a certain market share, the vendor gets into the posi-
tion of quasi-vetoing against OpenCL standards by not
providing support. However, OpenCL with its cross-
vendor nature can only be successful if it is available
for all major hardware architectures on the market. In
the context of graphics processing units, an integra-
tion of OpenCL into Vulkan is an option to resolve an
eventual gridlock if a vendor decided to only support
Vulkan, but not OpenCL.

3. CONCLUSIONS
The OpenCL ecosystem with a strict separation of host

code and device code imposes additional challenges for soft-
ware library development. This results in a chicken-and-egg
problem: Only high demand will push vendors to provide
OpenCL SDKs of highest quality. However, without high-
quality OpenCL SDKs, it is unnecessarily difficult to build
a rich set of software libraries to encourage users to demand
optimized OpenCL SDKs. A reduction of just-in-time com-
pilation overhead, better support for user-provided function
pointers on CPUs and, to the extent possible, GPUs, and
a merge of OpenCL and Vulkan to encourage better ven-
dor implementations are the possible paths outlined here to
solve this chicken-and-egg problem.

4. REFERENCES
[1] P. Jääskeläinen, C. Lama, E. Schnetter, K. Raiskila,

J. Takala, and H. Berg. pocl: A Performance-Portable
OpenCL Implementation. International Journal of
Parallel Programming, 43(5):752–785, 2014.

[2] K. Rupp. OpenCL Just-In-Time (JIT) Compilation
Benchmarks, 2016. https://www.karlrupp.net/2016/01/
opencl-just-in-time-jit-compilation-benchmarks/.

[3] K. Rupp, P. Tillet, F. Rudolf, J. Weinbub, T. Grasser,
and A. Jüngel. Performance Portability Study of Linear
Algebra Kernels in OpenCL. In Proceedings of the
International Workshop on OpenCL (IWOCL
2013-2014), pages 8:1–8:11. ACM, 2014.

[4] P. Tillet, K. Rupp, S. Selberherr, and C.-T. Lin.
Towards Performance-Portable, Scalable, and
Convenient Linear Algebra. In 5th USENIX Workshop
on Hot Topics in Parallelism (HotPar’13), 2013.

[5] Y. Zhang, M. Sinclair, and A. Chien. Proceedings of the
28th International Supercomputing Conference (ISC
2013), chapter Improving Performance Portability in
OpenCL Programs, pages 136–150. Springer, 2013.

https://www.karlrupp.net/2016/01/opencl-just-in-time-jit-compilation-benchmarks/
https://www.karlrupp.net/2016/01/opencl-just-in-time-jit-compilation-benchmarks/

	Introduction
	Possible Paths Forward
	Conclusions
	References

